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Abstract. Brain functional connectivity based on the measure of blood oxygen level-dependent
(BOLD) functional magnetic resonance imaging (fMRI) signals has become one of the most
widely used measurements in human neuroimaging. However, the nature of the functional net-
works revealed by BOLD fMRI can be ambiguous, as highlighted by a recent series of experi-
ments that have suggested that typical resting-state networks can be replicated from purely
vascular or physiologically driven BOLD signals. After going through a brief review of the key
concepts of brain network analysis, we explore how the vascular and neuronal systems interact to
give rise to the brain functional networks measured with BOLD fMRI. This leads us to empha-
size a view of the vascular network not only as a confounding element in fMRI but also as a
functionally relevant system that is entangled with the neuronal network. To study the vascular
and neuronal underpinnings of BOLD functional connectivity, we consider a combination of
methodological avenues based on multiscale and multimodal optical imaging in mice, used
in combination with computational models that allow the integration of vascular information
to explain functional connectivity. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.NPh.9.3.032211]
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1 Introduction

Although the brain has long been recognized as an intricate network of neurons rather than a
collection of segregated processing units, only the arrival of noninvasive brain imaging tech-
niques in the last decades has allowed neuroscientists to gaze at the large-scale network structure
of the human brain. The most popular of these techniques, blood oxygen level-dependent
(BOLD) functional magnetic resonance imaging (fMRI), notably allows us to infer neuronal
activity in the entire brain by measuring blood oxygenation changes that occur through neuro-
vascular coupling.1–3 While BOLD fMRI has been critical to the application of network neuro-
science to study the human brain, a fundamental limit of the approach is its inability to observe
neuronal networks directly, as it must rely on the brain vasculature as an intermediary to probe
neuronal systems. Even though the coupling between neurons and blood vessels is a local effect
that is usually described at the cellular scale, we highlight here how vasculature and hemo-
dynamics can alter our fMRI-based representations of large-scale distributed functional brain
networks in humans. We start with a brief overview of the concept of functional connectivity
(FC) that is now widespread in the current literature on human brain networks. We then go on to
revisit how hemodynamic effects influence measurements of FC and doing so review evidence
for the emerging hypothesis of overlapped vascular and neuronal functional networks.4–6 While
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numerous methods have been developed to correct vascular effects in fMRI, essentially treating
them as confounds to neuronal signals,7–9 we also focus here on viewing the vasculature as a
synergistic element actively involved in shaping neuronal dynamics over diverse time scales,
causing BOLD fMRI to effectively capture entangled neurovascular networks.9 We end by
an exploration of various experimental tools and models of connectivity that could eventually
help us to better understand the neuronal and vascular underpinnings of FC. Our goal with this
review is to highlight some of the caveats associated with BOLD-derived FC measurements and
to stimulate ideas aimed at elucidating how complex neurovascular interactions shape human
brain functional networks.

2 Network Approach to Studying the Brain

The study of brain connectivity and networks has become a standard paradigm in neuroscience
research, in line with the modern view of the brain as a single, complex system.10 The brain can
be modeled as a complex network of interconnected neurons using approaches based on graph
theory.11 Graphs are mathematical structures which represent discrete sets of pairwise inter-
actions between objects, represented by edges and nodes, respectively.12 A quick glance at a
graph representation is evocative of neurons and their synaptic connections (Fig. 2), leading
to an intuitive application of graph theory to neuronal systems. Noninvasive neuroimaging tech-
niques such as fMRI cannot, however, distinguish the fundamental neuronal units of brain net-
works, being spatially limited to millimeter-sized voxels in which millions of neurons are
densely packed. Connectivity and network interactions can nonetheless be observed across
multiple scales, as whole-brain neuroimaging data capture macroscopic and mesoscopic net-
works of interconnected neuronal populations with complex functional interactions.13 As such,
at the larger scales that are characteristic of human neuroimaging data, nodes are typically
defined as groups of gray matter voxels, based on anatomical boundaries or parcellations
obtained from brain-mapping techniques.14 The edges between nodes for their part can represent
either structural or functional interactions.

2.1 Structural and Functional Connectivity

At a fundamental level, structural connectivity (SC) designates connections that are formed by a
physical substrate between nodes. In brain networks, this occurs when two nodes are connected
synaptically, but the nature of the connection depends on the scale that is considered. For in-
stance, at cellular resolution, structural links could represent individual synapses, while at the
mesoscale they may represent myelinated axonal projections between brain regions.15

Anatomical projections can be measured noninvasively in humans using diffusion-weighted im-
aging (DWI), in which signal is generated from water molecules diffusing along white matter
tracts. Structural edges are then inferred from DWI scans using tractography algorithms.16,17 A
fundamental limitation of DWI is its inability to resolve edge direction in SC, thus leading to
undirected graphs, which do not directly inform about the causal influence that nodes exert on
each other. Directionality in SC may be inferred in animal models from postmortem imaging
techniques, for instance from reconstruction of electron microscopy slices, where pre- and post-
synaptic elements are distinguishable,18 or by tract tracing, in which a fluorescent tracer is
injected in a specific part of the brain and diffuses either anterogradely or retrogradely along
axonal projections.19,20

The interaction between structurally connected nodes leads to the emergence of network
dynamics, which can be described using an alternative form of connectivity. FC is defined
as a measure of the statistical codependency between activity measurements in different node
locations. In brain networks, this definition rests upon the assumption that cofluctuating areas are
likely to be either communicating directly21 or driven by shared inputs and thus to be involved in
similar functions. Activity can refer to direct measures of neuronal activity or proxies from elec-
trical (e.g., EEG), optical (e.g., fNIRS), or magnetic resonance recordings. The nature of the
functional relation between nodes can again be directed (causal), as inferred from the temporal
lags between nodal time series22,23 or modeling frameworks such as dynamic causal modeling
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(DCM).24,25 Alternatively, it can be undirected, as determined by correlation measures. Although
we will return to causal connectivity later, we will next focus on undirected FC typically char-
acterized by the Pearson correlation coefficient between the time series of nodal activity.

2.2 Functional Networks

The term “functional brain network,” within the framework of network neuroscience, refers to a
description of all interactions between regions distributed across the whole brain. However, sub-
sets of brain regions, which have been reliably observed to be coactive across human subjects26

and species,27,28 are also commonly referred to as functional brain networks. Such groups of
cofluctuating regions can be observed in both resting-state and task-evoked fMRI, in which case
they are respectively called resting-state networks (RSNs) and task-positive (or negative) net-
works. They are associated with different functional roles, as exemplified by their activation in
response to diverse cognitive states or demands. For instance, the default mode network, com-
prising regions of the prefrontal and cingulate cortex, precuneus, and inferior parietal lobules, is
normally active when subjects are at rest, but goes silent when cognitive load increases.29

Multiple methods have been used to identify resting-state or task-responsive networks from neu-
roimaging data, the most widespread being seed-based correlation and independent component
analysis (ICA).30 These different approaches have led to convergent spatial maps of coactive
regions,31 such that many of them, like the default mode network, are now considered archetypal
features of the brain. The regions that form an RSN or task-responsive network are highly inter-
connected both functionally and structurally32 and can be viewed as forming a network of their
own, but from the whole-brain network perspective, they are modules of a larger network. As
will be described later, new evidence suggests that these spatial footprints of neuronal activity
could also be relevant to explain the brain’s complex vascular organization.

2.3 Neurovascular Coupling in Human Functional Networks

Due to the preponderance of fMRI in the human neuroimaging literature, the term “functional
connectivity” has become chiefly defined by the study of correlations between regional or voxel-
wise activity as measured with BOLD fMRI. In this article, we will use the term BOLD FC to
refer to this definition, as opposed to the broader sense of FC defined above. BOLD FC is mostly
used as a neuroimaging tool under the premise that hemodynamic measurements are underlaid
by synchronized neuronal activity. This premise has been supported by many experiments, nota-
bly studies using combined fMRI and intracranial recordings in humans33,34 that have shown
good agreement between spatial patterns of brain electrical activity and BOLD RSNs.
Results from animal experiments have also shown that slow neuronal oscillations drive fluctua-
tions in arteriole diameter in the same frequency band within which FC is evaluated in resting-
state fMRI.35 However, other animal studies have also observed weak temporal correlations
between spontaneous hemodynamic signals and electrophysiological recordings, for example,
in the awake mouse barrel cortex during epochs of rest36 and in the anesthetized rat striatum,
where the correlations are reduced even further when dopaminergic activity is enhanced.37 Such
observations reflect the state and brain region dependency of neurovascular coupling and high-
light the challenge of interpreting BOLD FC in strictly neuronal terms.38 The ambiguous nature
of BOLD FC is further compounded by experiments that have observed the spatial signatures of
typical RSNs from non-neuronal signals.4,6,39,40

Despite its possibly ambiguous interpretation, BOLD FC and its derived graph-theoretical
metrics have shown great promise as eventual clinical markers.41,42 For instance, reliable group
differences in FC-derived metrics have been measured in pathologies, such as autism,43 schizo-
phrenia,44 Alzheimer’s disease,45,46 and in traumatic brain injury.47 However, from a treatment
development perspective, it would be useful to identify whether such disease-related changes in
BOLD FC are caused by neuronal, vascular, or mixed effects. This is particularly important
given that numerous neurodegenerative and neurodevelopmental disorders are strongly associ-
ated and sometimes preceded by vascular irregularities (see Ref. 48 for a recent review). In the
next section, we will review how various vascular parameters influence measures of FC and
present evidence arguing that observations of archetypal functional networks from non-neuronal
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signals do not challenge the neuronal origin of these networks, but suggest that BOLD FC cap-
tures an overlapped representation of vascular and neuronal networks.

3 Vascular Influences on BOLD Functional Connectivity

Since whole brain functional networks are for the moment visible in humans only through the
brain’s vasculature, it is crucial to have a quantitative understanding of how vascular structure
and function influence BOLD FC measurements. We thus begin this section by reviewing how
measurable neurovascular features such as the balance between cerebral blood flow (CBF) and
cerebral metabolic rate of oxygen consumption (CMRO2), but also purely vascular properties
such as blood vessel reactivity manifest themselves in BOLD FC measurements. We also take a
slight detour to emphasize the relevance of combining vascular measurements with BOLD FC to
characterize brain pathologies.

3.1 Interplay Between CBF/CMRO2 Coupling, SNR, and FC

BOLD FC is classically determined by computing the correlation coefficient between regional
BOLD time series, although possible alternatives will be briefly discussed later. Under the view
that neuronal connectivity is the variable of interest, any non-neuronal factor that influences
BOLD correlations will thus confound the measured connectivity. One crucial factor in deter-
mining the outcome of correlation measurements is SNR, as two strongly correlated time courses
can appear less correlated if random noise comes to dominate the “true” signals.49 With BOLD,
signal amplitude is inversely related to the amount of deoxyhemoglobin (HbR) in a brain voxel.
This is in turn related to two main time-varying quantities: HbR in, determined by CMRO2, and
HbR out, determined by CBF.50–53 A positive BOLD signal occurs during neuronal activation
when functional hyperemia increases CBF above energetic demands.54 It is thus the mismatch
between CBF and CMRO2, or CBF/CMRO2 coupling, that largely determines BOLD SNR (i.e.,
the BOLD contrast amplitude over signal variance).52,53 Hence, a decrease in CBF/CMRO2 cou-
pling can result in lower BOLD FC even in the presence of strong neuronal FC.55 This is impor-
tant since potentially confounding changes in the relationship between flow and metabolism can
occur in patients with various brain conditions56–58 and even in healthy individuals after caffeine
consumption,59,60 during task-performance,61,62 or between different brain regions in the same
subject.63,64

Apart from relative signal amplitude, the relative timing between CBF and CMRO2 is also
key to the correlation of BOLD time courses between two regions. An increase in the arrival time
of oxygenated blood in a vascular domain will dephase this domain’s initially synchronized
BOLD fluctuations with other regions,49 lowering FC in a manner that depends on the under-
lying delay in oxygen consumption.55

3.2 CBF/FC Coupling as a Possible Neuroimaging Disease Marker

Given the role of CBF in fueling neuronal communication, its association with brain-wide FC
metrics should come as no surprise. The presence of such an association can be verified by
combining arterial spin labeling imaging with BOLD fMRI to measure perfusion and BOLD
connectivity in the same imaging session. In such studies, a commonly reported connectivity
metric is functional connectivity strength (FCS). FCS is a graph-theoretical measure of centrality
and can be defined as the average connection weight (correlation coefficient) between a node and
all other network nodes. In brain networks, nodes with high FCS are often associated with hubs,
regions that integrate information from multiple segregated areas and thus form on average more
numerous and stronger connections. In a study conducted on healthy subjects, Liang et al. iden-
tified a strong correlation between a node’s perfusion level and FCS.65 This relationship was
distance dependent, as CBF was a better predictor of a node’s connectivity to remote than
to nearby nodes, suggesting that the level to which a brain region is supplied with blood depends
on its topological role within the network. Given that their higher perfusion level seems to reflect
elevated baseline metabolism,66 it has been proposed that hub regions could be especially
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vulnerable to metabolic or activity-induced stress.67–69 Conversely, a failure by the vascular sys-
tem to deliver sufficient energy to regions that theoretically play such a key role in information
exchange could also be a hallmark of many brain disorders.

Studies published in recent years have accordingly found signs of altered CBF/FCS coupling
in individuals with schizophrenia,70 Wilson’s disease,71 primary open-angle glaucoma,72 and
white matter lesions.73 In Alzheimer’s disease patients, decreases in FC estimated with ICA
were found to be linked to reduced perfusion, a relationship that was absent in healthy
controls.74 Also in Alzheimer’s patients, Zheng et al. found specific regional disruptions in
CBF and FC and proposed a biomarker based on CBF and BOLD low-frequency oscillations
amplitude in the posterior cingulate cortex and left precuneus.75 Apart from CBF, other metrics,
such as vascular volume fraction,76 have been used to investigate the relationship between BOLD
FC and the brain vasculature and could eventually be used to add an observational dimension in
the search of disease markers. Overall, these studies suggest that fMRI-derived graph-theoretical
metrics, when combined with vascular measurements, can yield greater insights into pathologi-
cal processes than when taken on their own, in line with the growing number of observed asso-
ciations between the brain vasculature and the onset and progression of neurodegenerative
diseases.48

3.3 Cerebrovascular Reactivity and FC

After seeing how the regional amplitudes and delays of CBF signals can affect measurements of
BOLD FC, both being determinant to the observed correlation between two regions, we now ask
what factor could potentially play a key role in establishing those region and subject-specific
properties.

Regional CBF levels are strongly related to metabolically costly neuronal activity through
neurovascular coupling.29,65 However, regional variations in vascular response amplitude and
latency are also known to occur through neuronally independent means. To study vascular regu-
lation and synchronization independently of neuronal (metabolic) contributions, we can turn to
insights provided by studies of cerebrovascular reactivity (CVR). CVR measures the ability of
blood vessels to actively dilate and constrict, and hence to control CBF, in response to a vaso-
active stimulus. It is a purely vascular property and considered to reflect vascular endothelium
and smooth muscle function. Its measure is often done by observing BOLD changes to varying
arterial partial pressure of CO2, a vasodilator that globally increases arterial diameter via a NO-
dependent pathway.77,78 Importantly, this method assumes that CO2 causes negligible metabolic/
neuronal effects, which has been challenged.79,80 CVR mapping is notably used to separate met-
abolic from CBF contributions to the BOLD signal in calibrated BOLD experiments, and its
importance in the interpretation of RSNs is increasingly being recognized (see the work by
Chen and Gauthier81 for review).

A notable characteristic of vascular responses to vasoactive stimuli is their high spatial
heterogeneity, both in terms of amplitude and dynamics. During breath-hold tasks used to glob-
ally increase CO2 arterial pressure, a difference up to 6 s in the time to maximal BOLD amplitude
can be observed across the brain.82 The fact that different brain regions can respond to the same
stimulus with varying delays has important implications for correlation-based FC. As CVR also
dictates the strength of CBF responses to vasoactive stimuli, and thus indirectly of BOLD SNR,
we could expect it to be a strong determinant of the ability to use BOLD to detect correlations
between regions with functional neuronal connections. Accordingly, observational studies have
shown that individuals with stronger CVR are more likely to display higher BOLD FC.83,84 This
relationship can also be experimentally observed within individuals by manipulating baseline
arterial CO2 levels, as hypercapnia leads to decreased reactivity.84–86 The result that CO2 inha-
lation results in lower BOLD connectivity80,84,87,88 is thus also consistent with the proposed in-
fluence of CVR on BOLD FC.

3.4 Physiological Correlations and FC

Another important contributor to BOLD FC is the regional level of physiological BOLD
correlations. Such correlations are often depicted as noise that hides true neuronal correlations.
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An example is the propagation through the brain vasculature of low frequency oscillations that
originate from outside the brain, described in studies by Tong et al.4,89 and reviewed in Ref. 90.
Such oscillations can, for example, arrive in the brain through the carotid arteries and then split
into both brain hemispheres, giving rise to symmetrical correlations that are independent of neu-
ral activity. The amount of such physiological “noise” in a region could potentially modulate the
positive effect of CVR on BOLD FC, even negating it in regions where physiological contri-
butions dominate neuronal ones.80,83

A key variable possibly affecting the importance of physiological noise is the regional level
of vascularization. Blood vessel density is known to account for a substantial portion of the
variance in resting-state BOLD amplitude,91 and FCS has been shown to be inversely propor-
tional to the macrovascular volume fraction within a voxel.76 The strong vascularization of the
occipital cortex92 has accordingly been suggested to explain the reduced sensitivity of BOLD FC
in this region.93 It is thus plausible that in strongly vascularized regions, physiological noise
domination could reduce the ability of BOLD FC to detect weaker neuronal correlations.

The evidence we reviewed suggests that structural vascular features such as vascular density,
but also functional features such as the regionally varying responsivity of blood vessels captured
by CVR, have a significant impact on the functional networks we can measure with BOLD
fMRI. Traditional denoising strategies based on the use of global nuisance regressors are inap-
propriate in the presence of such spatial heterogeneity. Other techniques such as ICA, which
decomposes imaging data in mathematically independent spatiotemporal patterns, have, how-
ever, shown a good ability to isolate experimental effects, neuronal and physiological contribu-
tions as well as artifacts such as those resulting from motion in fMRI.94–96

Furthermore, while the simplicity of the Pearson correlation coefficient makes it a statistical
measurement of choice for inferring FC, it remains especially sensitive to the potentially con-
founding vascular influences on BOLD SNR and delays. Connectivity could alternatively be
inferred from statistical quantities, such as cross-correlation, mutual information, Granger cau-
sality or transfer entropy, to name a few.97 Such higher-order statistical measurements could
potentially be less sensitive to vascular artifacts. For example, while classical correlation analysis
would miss the correlation between two synchronized neuronal signals that are translated to
BOLD with different time delays, cross correlation would capture this information by consid-
ering correlations at multiple time lags. However, as we will emphasize, the occurrence of
distributed vascularly or physiologically driven BOLD (de)synchronization could also reflect
functionally relevant entangled neurovascular territories. In the following section, we review
and discuss the implications of a series of recent experiments that have suggested that
typically measured BOLD functional networks represent the overlap of functional networks of
neuronal origins with functional networks generated through purely vascularly driven BOLD
synchronization.

3.5 Overlapped Neurovascular Networks Hypothesis

In a recent study, Bright et al. showed in an elegant way how BOLD task-responsive brain net-
works might be synchronized through both neuronal and vascular mechanisms.5 To do so, they
identified functional brain networks that were either activated or deactivated by a visual or work-
ing memory task, while intermittently presenting subjects with a vasodilatory stimulus (CO2

inhalation). They then demonstrated that each of the identified task-dependent network had
an associated spatially overlapped network, but whose activity was time-locked to the presen-
tation of the vascular challenge instead of the sensory or cognitive stimuli. Thus, even though the
effect of CO2 inhalation is supposed to be global, the responses to increases in arterial CO2 were
spatially segregated in groups of regions that also happened to form a neuronal task-responsive
functional network.

In another recent study, Chen et al. estimated the voxelwise BOLD responses to respiratory
variation and heart rate changes.6 Using a clustering algorithm to parcellate the brain into regions
with similar responses to these physiological signals, they showed that the resulting parcellation
tended to organize the brain in modules that resemble classic RSNs.

A final revealing example involves the previously mentioned systemic low-frequency oscil-
lations that propagate through the brain vasculature identified by Tong et al.4 In their study, the
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authors measured traveling oxygenation variations in the periphery (fingertips) and estimated the
time required for this signal to reach each brain voxel. This information was then used to build a
synthetic resting-state dataset representing the propagation of the signal through the brain vas-
culature. Despite the synthetic time courses containing only information about the time-shifts of
a systemic vascular signal, the authors could extract from these data strong replications of arche-
typal RSNs. In follow-up studies, the temporal delays associated with this signal were shown to
be consistent with a blood-born signal traveling along the vasculature.89,98

Overall, these studies show that the synchronization of BOLD fluctuations across the brain
may be due to both (1) coherent neuronal activity and (2) coordinated oxygenation fluctuations
that can be explained by physiological or vascular considerations alone (Fig. 1). The evidence we
reviewed suggests that these include (without being limited to) the spatial distribution of vascular
properties (e.g., CVR and vascular density), as well as the three-dimensional (3D) configuration
of the vascular network. The latter could constrain blood-traveling signals that generate large-
scale non-neuronal correlations causing apparent connectivity in fMRI studies. These would
result in the observed vascular-regulated functional networks that mimic the spatial distribution
of known neuronal functional networks. In addition to the reviewed experiments, this interpre-
tation is also consistent with other observations of duplicated networks.39,99

The presence of coexisting neurovascular networks lends itself to an interesting evolutionary
interpretation: while the network of neurons in the brain has evolved under the pressure of bal-
ancing the benefits of functional segregation (low wiring cost) with those of large-scale

Propagation 
delays

FC

Physiological
oscillations

Functional
connectivity
strength CBF

?
Regional properties
• Vascular density
• CVR

Neuronal
RSN

Vascular
RSN

CBF

FC

Fig. 1 Vascular influences on BOLD FC. Functional connections observed through BOLD fMRI
can be influenced in various ways by the vasculature. Nodes and edges depict elements of a
BOLD functional network. Propagation delays of blood-borne signals can induce time lags which
reduce correlations or generate spurious ones. Physiological oscillations can create non-neuronal
correlations which may be accentuated in strongly vascularized regions such as the occipital cor-
tex, making it harder to detect neuronal correlations. CBF is increased in hub regions where met-
abolic requirements are heightened, highlighting a local form of coupling between vascular and
neuronal organization. Furthermore, vascular properties are thought to be organized in spatially
remote areas to functionally match RSNs. The resulting coordinated delivery of blood in RSNs
leads to observations in fMRI of spatial components associated with purely vascular signals in
addition to neuronally-driven ones.
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integration (high communication efficiency),68,100–102 it has also evolved under the need to ensure
its various modules could constantly be supplied with sufficient energy according to their relative
needs. Because of the system’s complex network organization and of finite energy resources, the
vasculature co-evolved as an energy-delivering network that has adopted some functional and
structural features that are spatially organized similarly to functional neuronal networks. By
providing blood vessels in distant brain regions which operate synchronously with similar
dynamic properties (which could be instantiated via the properties of pericytes, astrocytes or
other CBF-regulating cells), the vascular system could form “vascular functional networks.”
These would serve to coordinate blood delivery in the most efficient manner for the metabolic
support of the entire complex neuronal network. In addition to the vasculature’s functional prop-
erties, its spatial configuration could also be formed to accommodate functional networks by
properly uniformizing blood propagation delays in frequently coactive regions, explaining how
the delay maps used by Tong et al. to build synthetic fMRI datasets could possibly contain neuro-
nal information.4,90 During development, this could be orchestrated by the known bidirectional
communication mechanisms between neurons and nascent blood vessels103 to ensure the for-
mation of a dense capillary bed that spatially matches brain metabolic demands.104,105

The works we reviewed support a view of the vasculature as not only structurally or func-
tionally tuned to local energy demands but also designed to support large-scale network organi-
zation of brain activity requiring spatiotemporally coordinated energy supply. This organization
is reflected in vascular functional networks, a term we use to designate groups of regions whose
coherent BOLD oscillations are driven by vascular sources independently of neuronal activity.
With the application of common functional network identification methods (e.g., seed-based
correlations, ICA), these give rise to replications of known neuronal functional networks.

3.6 Vasculoneuronal Interactions

Although vascular functional networks have for now been proposed to spatially match neuronal
networks for metabolic support, another possible interpretation for their observation, as sug-
gested by Bright et al.,5 is that they still fundamentally represent neuronal fluctuations, but that
would be actively driven by the vasculature. This explanation relates to the so-called hemoneural
hypothesis initially proposed by Moore and Cao.106 These authors, noting various ways in which
hemodynamics could have an influence on neuronal activity, in reverse of the canonical neuro-
vascular coupling direction, posited that blood flow may play an important role in information
processing in the brain. Proposed hemoneural transduction mechanisms involve endothelial
nitric oxide, which can affect neuronal polarization107 and synaptic plasticity,108 the cooling
action of CBF and the associated influence of temperature on neuronal activity,109 the activation
of mechanosensitive ion channels following vessel dilation and the modulation of neuronal
processing by vascular-sensitive perivascular astrocytes. More recently, Kim et al. obtained
evidence for these last two mechanisms by showing that increases in arterial tone could be sensed
by perivascular astrocytes through the mechano-sensitive TRPV4 channel and that the sub-
sequent increase in astrocytic calcium mediated a decrease in pyramidal neurons firing
rate.110 The same TRPV4 channel has also been suggested to be recruited in an astrocytic feed-
back control mechanism of slow arteriole oscillations.111 Another line of evidence for vascular
influence on neural activity is from observations of modified electromagnetic cortical activity
during hypercapnia79,80 (these observations are the same that challenge the use of CO2 inhalation
as a purely vascular stimuli). Recently, a study also proposed an interesting vascular feedback
mechanism in the hypothalamus by which the firing of vasopressin neurons, acting to re-
establish body fluid homeostasis after a sudden increase in systemic sodium levels, can be main-
tained over a prolonged period.112 After sensing increases in circulating sodium levels, the firing
of this population triggers a slow release of vasopressin, which acts as a vasoconstrictor on
nearby vessels. The ensuing decrease in blood flow produces a hypoxic environment that would
serve as a positive feedback mechanism to maintain elevated neuronal firing rates and vasopres-
sin release. Since much of the experimental work showing vascular to neuronal communication
involves the use of brain slice models, it would be interesting to see more of these mechanisms
investigated in vivo.
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The possibility of hemoneural communication does not diminish the importance of already
known neurovascular communication pathways, but the emerging literature on vascular feed-
back mechanisms suggests that different contexts may be better explained by a different combi-
nation of the two. For example, to describe rapid (∼s) flow increases in cortical responses to
sensory stimuli, feedforward neurovascular coupling might be sufficient, while vascular modu-
lation of neuronal activity in the resting-state to accommodate changes in systemic pressure
might be best described by vasculoneuronal coupling.110 Context may also refer to the brain
region and time scale at play, for example, when considering prolonged (∼h) hypothalamic
responses aimed at maintaining homeostasis during a systemic challenge.112 If the early appear-
ance of CBF reductions truly has a causal role to play in neurodegenerative diseases such as
Alzheimer’s or schizophrenia,113–117 then the ensuing disruption of neuronal networks spanning
multiple years is also likely to involve, at least initially, vasculoneuronal effects. Other indirect
evidence of causal vascular influence on neuronal systems includes the impact of slow breathing
and heart rate variability on FC in emotion regulation networks,118 the link between cardio-
vascular health, cognition, and structural brain changes119 as well as between age-related cog-
nitive decline and cardiovascular risk factors.120,121

Does vasculoneuronal communication help describe observed neuronal and BOLD signal
dynamics under certain conditions and time scales? Do these effects contribute to information
processing? What are the respective contributions of neuronal and vascular compartments to
both local BOLD signals and the coherence between spatially separated signals? To begin
answering such questions about the physiological mechanisms underlying BOLD functional
networks and brain function in general, we turn in the next section to recent experimental
advances that allow measurements of neuronal and vascular-based networks in animal models
at different scales (see Ref. 122 for an excellent review on the subject). Importantly, since macro-
scopic brain networks are made of microscopic cellular networks, we emphasize certain combi-
nations of animal models and imaging techniques that together give access to a multiscale
portrait of neurovascular interactions. We end by reviewing modeling approaches that can lev-
erage such multiscale neurovascular imaging data to either provide more physiologically
grounded and causal interpretations of BOLD FC or explain more variance in patterns of func-
tional connections.

4 Toward the Disentangling of Neurovascular Networks

Let us consider the hypothesis that vascular structure and function can influence BOLD FC in at
least two ways: (1) via the regional- and subject-specific hemodynamic filter through which
neuronal signals are converted to BOLD signals, and (2) via their synergistic interactions with
neurons, mediated by other cells of the neurovascular unit (NVU) which could directly shape
neuronal dynamics. These influences roughly encapsulate the two (nonexclusive) ways in which
vascular imprints on BOLD functional networks can be viewed: either as confounds or as func-
tionally relevant features. In this section, we start by discussing imaging approaches that can help
us see through or study those two types of influences. Toward the former, we review how recent
optical methods are constantly bringing us closer to directly accessing neuronal dynamics and
connectivity, without the filtering action of hemodynamics. We also highlight the current limits
and technical challenges of extending them to the mouse, a translational model of choice.
Toward the latter, we discuss how mouse studies can provide network measurements of both
neuronal and hemodynamic signals at multiple spatial resolutions, providing a means to study
their mutual influence and the mechanisms that unite them across observational scales.

4.1 Towards All-Neuronal FC Using Optical Techniques

In animals, neuronal activity can be directly measured without the proxy of fMRI by virtue of
combining genetically encoded calcium indicators (GECIs) or contrast agents with fluorescence
imaging techniques. Fluctuations in calcium indicator fluorescence report local calcium (Ca2þ)
concentration, related to spiking activity, in the cells or subcellular regions where the indicators
are targeted. The most widely used GECI, GCaMP, is still being continuously improved.123,124
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Although the slow decay rate of calcium buffers makes calcium signals unable to clearly resolve
individual spikes that are separated by less than ∼1 s, many inference methods have been pro-
posed to recover the underlying spiking activity, given a fast enough sampling frequency.125–129

Voltage-sensitive dyes130,131 offer another avenue for measuring neuronal activity with high-
temporal resolution using fluorescence microscopy and have been deemed “all-optical electro-
physiology.” In naturally transparent organisms expressing GCaMP, such as C. elegans and the
zebrafish larva, calcium activity can be recorded optically in neurons across the entire brain with
a temporal resolution of ∼1 to 3 Hz using lightsheet microscopy132 or fast laser-scanning multi-
photon microscopy (LSMPM).133 From these whole-brain neuronal recordings in small animal
models, both functional and structural network approaches have led to descriptions of topologi-
cal features that are similar to well-described features of BOLD FC in humans, such as a modular
structure of interconnected regions in zebrafish134,135 and a regionally heterogeneous structure–
function relationship in drosophila.136,137 While it is interesting to observe similarities across
species and imaging modalities, supporting the neuronal origins of BOLD FC topological mea-
surements made at much larger scales, all-neuronal FC in small fish and insects sheds little light
on the complex neurovascular interactions in mammal brains.

In a translational perspective, a cross-species approach in which measurements from multiple
species with the various imaging modalities that are available for each of them will be necessary
if we hope to extract a maximum of neurophysiological information from noninvasive tools.138

Scaling up optical recordings to larger animals requires the development of faster microscopes
with wider fields of view (FOV) combined with optical access in highly scattering brain tissue.
Typically, LSMPM, the most popular tool for depth-resolved imaging of calcium signals, can
scan a ∼600 × 600 μm xy plane with submicrometer resolution in ∼0.5 s when using regular
galvo scanners. Collecting a stack of such planes by physically moving the focal plane by incre-
ments of ∼2 μm to create a 3D image that is ∼600 μm deep thus requires tens of seconds, which
precludes volumetric measurement of calcium dynamics. Thus, the trade-off between temporal
resolution, spatial resolution, and FOV of standard LSMPM is limiting recordings of neuronal
calcium to two-dimensional (2D) subregions in the mouse brain. With the goal of bridging the
study of neuronal microcircuits to that of whole brain dynamics, several groups are pushing these
boundaries by developing ever faster and larger FOV microscopes.

Technical advances in optical engineering are key towards this goal. For example, an
8 × 10 mm FOV two-photon microscope with 1 μm lateral resolution and 5 mm/ms scan speed
was developed using large diameter compound lenses to minimize aberrations.139 In classical
laser-scanning designs, faster z-scanning can be achieved using a piezo-electric driven objective;
in the transverse (xy) plane, resonant galvanometer mirrors can be used to increase scan rates
tenfold. Furthermore, fast volumetric imaging can be achieved by bypassing entirely the need to
scan the laser excitation beam in one or more dimensions. Lightsheet microscopy uses a 2D layer
of illumination perpendicular to the objective to image an entire xy plane at once but requires
sample transparency to image large volumes. Its use to image whole brains in mice has thus been
limited to postmortem preparations using optical clearing agents,140–142 but implantable photonic
probes that can image restricted FOV in vivo are also being developed.143 Alternatively, one
could bypass the z scanning direction in vivo with LSMPM by extending the focal point of the
excitation beam axially to obtain a focal line. The resulting so-called Bessel focus allows the
simultaneous excitation of fluorophores spanning a depth of several tenths of microns, albeit
without depth resolution.144

Multidisciplinary technical developments have allowed the activity of a growing number of
neurons to be simultaneously recorded in the mouse cortex. Kim et al.145 have for instance devel-
oped large curved cranial windows that fit most of the cortical surface, granting optical access to
∼ a million neurons and allowing them to measure from volumes comprising ∼10; 000 neurons
with sufficient spatial and temporal resolution. Using a Bessel focus, Lu et al.146 reported
imaging a 301 × 450 × 612 μm volume at 3.2 Hz and recording 9247 active inhibitory neurons
within a 3020 × 1500 × 600 μm volume at 1 Hz. Using resonant LSMPM, calcium traces of
16,000 neurons were observed over a 3-mm square of the mouse cortex scanned at
7.5 Hz.147 Another group reported calcium recordings of ∼10; 000 neurons at 2.5 Hz spanning
11 imaging planes spaced at 35 μm.148 Such datasets, which lie in very high-dimensional spaces,
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have been studied from various angles using data clustering and dimensionality reduction
techniques.149–151

Despite the technical and computational challenges associated with the relatively large scale
of neuronal dynamics in rodents, they remain one of the most promising models for translating
results to human brains. This is due in part to their relative phylogenetic proximity as mammals,
combined with their physical size appropriate for both cellular calcium imaging as well as
noninvasive BOLD-fMRI. Such a combination of invasive microscopic with noninvasive
macroscopic imaging within a same species offers a unique opportunity for translational
neuroscience.138 Mostly due to their larger brains, rats remain the most widely used species
in fMRI studies95,152 and have been used to obtain concurrent fMRI and optical measurements
for more than a decade.153–155 Since then, the use of mice for fMRI studies has also been steadily
increasing,152,156 with combined optical recordings having recently been demonstrated within the
same individual157 and even simultaneously.158 For the study of brain networks, the possibility of
combining whole-brain fMRI signals with publicly available mouse atlases of structural con-
nectivity and gene expression from the Allen Institute19,159 makes mice an especially interesting
model. Over the past decade, there has also been an explosion in the number of available trans-
genic mice lines and genetic tools, further contributing to the wide adoption of this model to
answer various neuroscience questions (see Ref. 160 for a review of available tools). Here, we
focus on the imaging—rather than manipulation—techniques, reviewing combinations of all-
optical or MR-optical methods that allow us to examine the interactions between neurons and
vessels across scales.

4.2 Toward a Description of Neurovascular Dynamics at the
Microscopic Scale

The study of the coupling between neuronal, metabolic, and vascular activity has been an active
field of research in recent decades. Much effort has been devoted to trying to understand the link
between macroscopic BOLD signals and electrophysiology in specific frequency bands,34,161,162

which is notably difficult because of the high regional variability of this relationship.163 On the
other hand, another active area of study on neurovascular coupling involves a search for the
molecular pathways that allow cells of the NVU to coordinate blood flow (see reviews in
Refs. 2, 164, and 165). Recent developments in imaging methods and genetic tools now also
make it possible to observe how CBF is dynamically regulated by the NVU at the smallest scales
of the cerebrovascular network.166 The typical approach for this requires to simultaneously, or
under the same conditions, measure activity in both specific NVU cells and blood vessels.

At the microscopic, single-cell, and single-vessel scale, LSMPM has made its way as the
imaging tool of choice. By spectrally separating emitted fluorescence from multiple contrast
agents, LSMPM can simultaneously measure multiple contrasts during one experiment, for
example, to combine GECIs with intravascular injections of blood plasma dyes167 to simulta-
neously observe activity in NVU cells and vessel diameter or red blood cell velocity. In vivo
optical access in such experiments is usually provided from either a thinned skull preparation or a
craniectomy sealed with a glass window.168 This approach allows researchers to take full ad-
vantage of the cellular specificity that GECIs provide to study neurovascular interactions in
multiple NVU cells, for example in pericytes,169 astrocytes,170 microglia171 or even in specific
neuronal populations simultaneously.172 GECI expression has typically been achieved in trans-
genic mice lines or through invasive AAV virus injections directly into the brain, but the advent
of AAVs that can cross the blood–brain-barrier and thus be intravenously injected173 now makes
this tool even more accessible. Calcium indicators can further be combined with the cell-type-
specific targeting of channelrhodopsins to perform optogenetic stimulation to causally study the
cellular specificity of neurovascular coupling using all-optical methods.174 Many such optoge-
netic studies are conducted at the mesoscale using widefield imaging, which we discuss later.

Using simultaneous blood vessels and cellular markings with LSMPM has recently allowed
researchers to study how blood flow is regulated in microscopic networks of capillaries. Recent
work has indeed revealed that CBF is not only controlled at the level of large descending arte-
rioles through vascular smooth muscle cells to uniformly feed large populations of neurons but
also that even within small microvascular networks, calcium-dependent mechanisms allow small
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groups of neurons to finely tune blood flow distribution on a branch-to-branch basis.175 At this
level, pericytes and endothelial cells communicate via gap-junctions according to a connectivity
map that is locally modulated by activity to propagate focal vasomotor responses in a preferred
direction along a capillary branch.176 At branching points of a capillary circuit, single junctional
pericytes extend processes over splitting branches that can differentially contract to direct flow in
one branch or another depending on the location of activity.177 In the mouse retina, even remote,
nonadjacent capillary branches have been shown to communicate to finely allocate blood
according to activity levels via pericytes that possess nanotube-like structures through which
vasoconstrictive signals can travel.178 Different nonstructurally connected regions of the vascu-
lature may thus effectively form functional connections via the intermediary of pericytes. This
body of work suggests a view of the microvasculature as not just a passive blood distributing
structural network, but as a functional network dynamically engaged in controlling blood flow.
Recent studies have also proposed that different layers of this network may modulate CBF on
distinct characteristic time scales, with capillary pericytes exerting a slower constricting effect
than mural cells on larger upstream vessels.176,179 Similarly, studies hint that astrocytic CBF
regulation may act on a faster time scale and through different molecular pathways at the capil-
lary level than on larger upstream arterioles.111,170,180,181 These observations illustrate that blood
flow regulation in the brain is achieved by diverse functional components (i.e., NVU cells) of a
rich vascular network acting at multiple spatial and temporal scales. A full understanding of
neurovascular interactions thus involves the study of neuronal and vascular networks across
multiple scales (Fig. 2).

Future studies combining fast, large FOV imaging with cellular and single-vessel resolution
recordings open the door to obtaining experimental datasets of larger-scale neurovascular net-
works. For example, a Bessel focus LSMPM was employed to monitor vascular dilation in indi-
vidual vessels at volumetric video rate,182 which could be simultaneously imaged with neuronal
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Fig. 2 Imaging neurovascular networks at different spatial scales. The interactions between neu-
rons and vasculature can be observed in vivo at different spatial scales. At the microscopic scale,
calcium imaging in neurons at cellular resolution can be combined with colocalized imaging of
blood vessels and other cell types within the NVU. At the mesoscopic scale, widefield calcium
imaging can be combined with vascular optical measurements in cortical surface vessels. At the
macroscopic scale, BOLD fMRI measures entangled neuronal and vascular interactions.
Structural connections are measured using diffusion MRI and regional blood flow using arterial
spin labeling. Small pictograms depict the translational perspective of macroscopic noninvasive
brain imaging, whereas smaller scales are only accessible in animal models. Bridging across
scales can be accomplished experimentally with multiscale measurements in a single animal.
Compiling results from standardized measurement protocols repeated across entire brains can
yield statistically representative maps of microscopic properties, or atlases, to which macroscopic
datasets can be coregistered.
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calcium activity in the same volume.146 Another modality promising for fast volumetric imaging
of vascular dynamics is optical coherence tomography (OCT). OCT is not based on fluorescence
but rather on intrinsic refraction-based contrast and measures depth-resolved signals using spec-
tral information—again bypassing the need for scanning in the z direction. It can be used for
structural microangiography and dynamic flow measurements using Doppler OCT.183 OCT
could be combined with fluorescence techniques for simultaneous calcium and vascular imag-
ing. Some advantages of OCT over fluorescence microscopy are that it does not require tracer
injection, that wavelength (thus maximal imaging depth) can be selected without worrying about
fluorophore excitation spectra, and that volumetric scanning is achieved by 2D scanning of the
illumination.

Despite such continuous technical development to transcend the FOV and time resolution
constraints of LSMPM, the recording of multiple regions spanning large FOV necessary to study
meso or macroscale brain connectivity currently requires the use of other imaging techniques
which cannot achieve microscopic, single-cell resolution.

4.3 Scaling Up: Toward Translational Measurements of Neuronal and
Vascular FC

For assessing both the neuronal and hemodynamic components of large-scale FC at a cortex- or
brain-wide scale, measures of neuronal and vascular signals can be combined in mesoscale im-
aging systems. To achieve large FOV, calcium indicators can be imaged with widefield systems,
albeit without depth resolution. In these systems, GCaMP is excited over the entire FOV (typ-
ically using an LED) and fluorescence is measured with a camera,184 forming images all at once
as opposed to the point-by-point approach of LSMPM. Widefield imaging can be performed
through the intact or thinned skull as well as through transparent cranial windows, although
the latter may limit the size of the observable region. For this reason, window preparation and
implantation methods have been optimized to provide large FOV,145,168,185 and it was demon-
strated that cranial windows used for optical imaging are compatible with MRI.157 In addition to
fluorescence signals, widefield systems can measure wavelength-specific reflectance to report on
large-scale cortical blood volume and oxygenation, a technique called intrinsic optical
imaging.186 The principle is to estimate concentration changes in oxyhemoglobin and deoxy-
hemoglobin, whose absorption spectra are known, from changes in the intensity of reflected
light at multiple wavelengths. Hemodynamic signals have a direct artifactual influence on cal-
cium fluorescence measurements, as emitted fluorescence will be partially absorbed by blood
and its intensity will covary with blood volume. Relatively easy to implement methods have,
however, been proposed to correct this artifact.187,188 Widefield calcium and intrinsic optical
imaging can in addition be combined with blood flow measurement techniques, such as laser
speckle contrast imaging, to create versatile neurovascular imaging systems that can simulta-
neously measure cellular calcium, blood oxygenation and volume, and CBF.157,184

One advantage of widefield neurovascular imaging is that it can easily be combined
with optogenetics to causally study the role of various cell-types in shaping cortical
hemodynamics.188 By specifically expressing the light-gated cation channel channelrhodopsin,
a light source can be used to depolarize a group of targeted cells while the widefield system
measures the associated hemodynamic signals. A promising research avenue that takes advan-
tage of this methodology aims to identify cell-type-specific hemodynamic signatures that could
eventually enable noninvasive measurement techniques such as fMRI to be used to infer activity
in different neuronal populations, effectively bridging the scale from macroscopic to microscopic
brain imaging.189,190 Widefield imaging systems and optogenetics have been used to compare the
vascular outcomes of optically activating neurons and astrocytes,191 excitatory and inhibitory
populations,192–195 and multiple subtypes of inhibitory neurons.196 Although most of these
studies do not converge yet toward a consensus that could clearly allow to disambiguate the
activity of specific neuron-types in BOLD signals, a recurrent observation important for
BOLD fMRI is that different subtypes of interneurons can inhibit excitatory activity while pro-
ducing both vasodilation and vasoconstriction, often in sequence, resulting in biphasic CBF
responses.157,174,193,194,196
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Another new key imaging opportunity for the study of neurovascular brain circuits at the
neuronal population scale is that of laminar fMRI measurements. The development of ultra-
high-field (≥ 7 T) scanners and new MRI sequences, including non-BOLD sequences such
as CBV-weighted vascular space occupancy, now provide researchers with enough spatial res-
olution to resolve individual layers of the cortex in whole brain fMRI scans.197–200 From a net-
work perspective, studying laminar signals can add another dimension to FC as each cortical
brain region can be decomposed into its constituent layers, those layers often being known to
contribute to information flow in specific directions. For example, tract tracing studies show that
most feedforward thalamocortical connections end in L4, while corticothalamic projections
originate from L5 and L6,201 those from L5 being considered feedforward and those from
L6 feedback.202 Based on hypotheses inferred from such anatomical data, one can use lami-
nar-specific fMRI to add a directionality element to FC in humans.197,203 One can also use
layer-fMRI to verify predictions from computational theories of brain function, which often
assign specific roles to neurons in different layers.204

Cortical layers possess distinct vascular features that are necessary to consider when ana-
lyzing laminar fMRI data. For example, the average orientation of capillary segments strongly
varies with cortical depth, as capillary branches only have weak orientation preference in deeper
layers but become more and more normal to the pial surface in superficial layers.205 Such
anisotropy has been shown to have profound effects on MRI signals.206,207 Microvascularization
levels also vary between layers, capillary volume density being highest in intermediate layers
and lowest in L1,104 which makes the laminar fMRI signal unavailable from this layer.197 These
examples show that a reliable interpretation of high-resolution fMRI requires a detailed under-
standing of the brain’s vascular architecture at this scale (see Sec. 4.5).

To study functional networks at the scale of the entire cortex, several groups have combined
widefield calcium and hemodynamic imaging, either using intrinsic optical imaging184,208–211 or
BOLD fMRI.158,212 Although these studies have mostly shown a good agreement between calcic-
and hemodynamic-based FC, some departures have also been observed. For example, Lake et al.
observed that within a given hemisphere, FCS in the mouse barrel cortex measured with BOLD
was positively correlated to FCS measured with calcium signals from excitatory neurons.158

However, when only interhemispheric connections were considered, higher BOLD FCS was
associated with lower calcium FCS. To explain this discrepancy, the authors hypothesized that
interhemispheric inhibition could simultaneously be decreasing excitatory activity while increas-
ing BOLD signals (Fig. 3).

This interpretation of their results highlights the importance of being equipped with a
good model of neurovascular coupling (furthermore, of cell-type specific coupling) to explain
how BOLD connectivity results from neuronal interactions. Lake et al.’s hypothesis is based
on the aforementioned studies on neuron-type-specific neurovascular coupling that demonstrate
how inhibitory neurons can simultaneously decrease overall neuronal activity and increase
blood flow by producing vasoactive compounds.196,213,214 To reliably test such hypotheses about
the physiological mechanisms behind the BOLD effect, generative models of neurovascular sig-
nals, i.e., models that try to explain how a neuronal signal (e.g., synaptic activity) is eventually
transduced to a vascular one (e.g., vasodilation), provide a powerful and necessary tool. The
recent notion of cell-type-specific neurovascular coupling has indeed begun to be formulated
in such model form.215 However, neurovascular models typically describe local interactions
between neurons and vasculature in singled-out brain regions. Since we are concerned with the
task of explaining BOLD FC, generative models also need to be embedded within models of
connectivity, i.e., models that can account for the effects that different regions exert on
each other.

4.4 Getting Causal: Modeling Functional Connectivity

Models that try to predict connectivity patterns in a feedforward (generative) manner are vital to
our ability to answer questions about the neurovascular origins of BOLD FC, but also allow us to
bring the study of brain connectivity a step further. By definition, FC is an observational measure
of statistical dependency between nodes and as such cannot be used to infer causality
(directionality) in the links between them. The causal influence that different regions exert
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on each other is captured by a distinct concept called effective connectivity (EC).216 EC and FC
are related, since effective connections dictate which (not necessarily connected) regions can
become partially synchronized (functionally connected). A typical example of divergence
between FC and EC is the case when two physically unconnected brain regions receive a
common input that drives them toward synchronization.

EC can be inferred from generative models of brain signals (measured with fMRI, EEG, or
other techniques). One of the most prominent frameworks of this kind is DCM.24,25 DCM is used
to estimate EC between specified brain regions by first forming a generative model of BOLD
data that mathematically describes how neuronal signals are translated to hemodynamic and then
to BOLD signals. To represent interregional interactions, neuronal activity is modeled with
coupled differential equations (one for each of the regions considered), in which EC is intro-
duced in the form of a coupling matrix that mediates the strength of the interactions between
regions. By fitting the generative model to the measured BOLD regional time-series using
Bayesian inference, model parameters of interest are estimated. These include the EC matrix,
which can then be used to uncover effective brain networks and their graph-theoretical proper-
ties,217 but also modeled neuronal and vascular parameters. DCM is thus a powerful framework
to separate the underlying neuronal and vascular correlates of measures of brain-wide distributed
BOLD activity under the assumptions of the chosen model.

The question of choosing a proper generative model is hence key to interpreting EC. To this
end, DCM is used in combination with Bayesian model comparison to choose between different
models according to their relative statistical evidence.218,219 This way, one can use DCM to
explain FC according to the basic tenets of the scientific method, starting by observing a pattern
(BOLD FC), generating multiple hypotheses attempting to explain that pattern (EC + generative
model) and systematically evaluating and comparing the evidence for each of these hypotheses
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Fig. 3 Divergence between BOLD FC and neuronal FC. Although a good agreement is generally
observed between FC derived from BOLD and from calcium measurements, the cell-type speci-
ficity of neurovascular coupling can potentially lead to divergence between the two, as observed in
Ref. 158. Specifically in the mouse barrel cortex, the expected positive relationship between con-
nectivity strength evaluated with BOLD and excitatory calcium signals holds only when consid-
ering interhemispheric nodes (left upper panel). When considering intrahemispheric nodes, the
relationship is negative (left lower panel). Taking into account the likely presence of strong inter-
hemispheric inhibition in the barrel cortex, this discrepancy can be explained by positing that
inhibitory populations can simultaneously generate positive BOLD signals while inhibiting excita-
tory neurons across hemispheres. The arrows in the right panel represent the relationships
between the different networks, with hemoneural interactions possibly mediating a link between
the vascular and functional neuronal networks. The left panel is a sketch of the results from
Ref. 158.
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(Bayesian model comparison). Such a procedure can be used both at the local level, for example,
to evaluate if neurovascular coupling is best described by synaptic input or spiking output,220 and
at the network level to evaluate how different neurovascular coupling models impact estimates of
EC.221 Based on the ideas we have presented here, one could also test whether including vas-
culoneuronal interactions in a model helps predict observed network dynamics in a specified
context, for example, during vascular disease-induced prolonged reductions in CBF.

Although DCM is typically used with human neuroimaging data, animal studies provide the
means to directly access modeled hidden (neuronal and vascular) signals to inform model selec-
tion. This idea has, for example, been used in humans to merge EEG and fMRI data,222 but
invasive animal studies using new multimodal imaging tools can go a step further by providing
both spatially and temporally resolved neurovascular measurements223 (Fig. 2). As we have
emphasized, these also offer the exciting opportunity to explore the multiscale and multilayered
aspects of brain networks224,225 and thus to ask questions about how neurovascular network prop-
erties at the cellular scale (neuronal/capillary microcircuits) translate to observations at larger
scales (neuronal populations/large vessels).

With the above example of DCM, we show how vascular measurements can be embedded
into a computational modeling framework to generate causal interpretations of neuronal
dynamics, but this idea can further be extended to other modeling approaches. Artificial neural
networks have become a widely used tool in the study of real neuronal systems.226 Of particular
interest, recurrent neural networks, through their rich internal dynamics, are especially
well-suited to model neurobiological dynamical systems.227 They can be trained to reproduce
real-time series data, and the trained network can be reverse engineered to infer mechanisms
of interaction between network elements.228,229 Multilayer approaches can also model
different interacting compartments of a system, such as neuronal and astrocytic layers230 but
also vascular layers which impose energetic constraints231 or interact bidirectionally232 with neu-
ronal layers.

As opposed to models of dynamical systems based on differential equations, another promi-
nent approach in network neuroscience is the descriptive study of network topological properties
without any assumption about a generative model. We have argued in this article that vascular
and neuronal systems form an overlapped and even possibly entangled neurovascular network.
For the observational use of BOLD FC, we have shown how incorporating vascular measure-
ments with BOLD could add a meaningful dimension to characterize brain networks in health65

and disease.74,75 Similarly, models that aim to quantify the relative associations between various
physiological properties and BOLD FC would benefit from the incorporation vascular proper-
ties. Linear models and correlations have been predominant in the study of the structure–function
relationship of brain networks,233 suggesting many principles by which structural networks
could explain variance in functional interactions, notably through indirect pathways or diffu-
sion-like processes.234 Earlier studies assumed homogeneity in SC-FC coupling across network
nodes, but the recent recognition of the spatial variability of this relationship137,235 points to the
importance of taking regional properties and topological embedding into consideration. A recent
review on the structure–function relationship by Suárez et al.236 draws the attention on biologi-
cally informed models where microscopic regional inhomogeneities in laminar differentiation
and cytoarchitecture237 or gene expression238 are considered as node properties, yielding better
predictions of FC. Network analyses will certainly benefit from a growing effort in developing
large databases of microscopic properties distributed over macroscopic scales, which are dis-
cussed in Ref. 239. In line with the idea of considering vasculature not as a confound but
as a potential predictor of network activity and connections, we ask whether including regional
vascular properties or blood flow across regions would add significant depth to macroscale net-
work analysis. Rodent studies will once again be key to test this idea, as recent developments are
now allowing the measure of microvascular structure at the whole brain scale in mice, from
which vascular graphs and their properties can be extracted.

4.5 Measuring Structural Vascular Networks

The brain vascular system is naturally organized as a network of interconnected segments with
varying morphological and mechanical properties matching their different functional roles.
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The topology of this network varies along the vascular tree (from pial to penetrating vessels and
capillaries) and has been well characterized, as reviewed in Ref. 240. To probe this topology, new
in vivo and postmortem imaging techniques have facilitated the measurement of microvascular
network structures in animal models, allowing 3D images of the vascular tree to be transformed
into graph representations that can be used within the framework of graph theory. Automatically
segmenting vascular images and creating a graph representation of them has been achieved
using a machine learning approach.241 Efforts have also been put toward synthetizing artificial
vascular networks using computational models that accurately reproduce real vascular network
properties.242 In vivo, volumetric images of microvasculature can be measured using LSMPM in
combination with exogenous intravascular contrast agents167 or genetically encoded labeling of
endothelial and mural cells.243 The advantage of in vivo measurements is that they can be per-
formed longitudinally and analyzed in a framework of dynamical networks, but they are limited
by the FOV constraints of LSMPM.With postmortem preparations, however, the vasculature can
be imaged throughout the entire brain using mechanical slicing or optical techniques.244

Using the former in gel-infused preserved brains, Blinder et al.245 obtained a graph repre-
sentation of the barrel cortex vasculature, but only recently was the whole brain vasculature down
to the capillary level imaged in mice. Xiong et al.,246 for example, used optical sectioning tomog-
raphy and a modified Nissl staining method to construct a vascular atlas of the mouse brain.
Quintana et al.247 reconstructed the whole-brain vasculature based on vascular corrosion casts
imaged with microCT. In 2020, Kirst et al.140 presented an impressive contribution in which the
entire mouse brain vasculature was imaged with lightsheet microscopy following immunolab-
eling and tissue clearing; a pipeline for automatically creating vascular graphs was developed
and yielded the first graph representation of the entire mouse brain vascular network. Finally, Ji
et al. recently obtained a whole brain microvascular connectome at submicrometer resolution
using serial LSMPM imaging in lumen-perfused brains, allowing them to perform geometrical
and topological analysis using precisely measured capillary radii.205 Such advances will be key
for bottom-up modeling of functional imaging signals, for example, with the vascular anatomical
network model proposed by Gagnon et al.,206 which uses microvascular angiograms as a basis to
simulate BOLD time series. Another application is the integration of microvascular properties in
brain network models, for example, to study the structure–function relationship. To this end,
standardized large-scale vascular atlases could eventually be produced, taking advantage of the
ever-growing open science and collective efforts agenda.239

5 Conclusion

The considerations presented in this paper have highlighted the ambiguous dual neurovascular
nature of BOLD-derived FC. Instead of simply noting the various ways in which vasculature can
influence BOLD neuronal representations, recent evidence allows us to propose an interpretative
framework of overlapped neuronal and vascular networks to describe BOLD functional net-
works. Furthermore, the apparent synergy between neuronal and vascular systems suggests a
view of the vasculature as not merely an additional layer between neurons and BOLD measure-
ments, but as a component of an entangled and functionally relevant neurovascular network. Far
from being a nuisance, neurovascular networks might also prove more useful than purely neuro-
nal ones in identifying early markers of neurodegenerative diseases that are characterized by an
early onset of vascular dysregulation.113–116,248 BOLD FC by itself has already shown promise as
a source of observational markers of disease state,41,42,44,249 but distinct clinical populations can
remain hard to differentiate.47 Using methods that can further distinguish the two components of
neurovascular networks opens the door to the discovery of new disease biomarkers in humans,75

and in combination with invasive imaging in translational animal models and appropriate
modeling frameworks, will eventually allow us to move toward a more causal understanding
of network disruption in disease. Given that neurovascular interactions can be observed at multi-
ple scales, this process will be helped by multiscale and multimodal imaging data that will
facilitate the complementation of macroscale imaging observations with microscopic measure-
ments, enabling us to paint a more complete picture of brain networks and their alteration in
disease.
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