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1 Introduction
For large-aperture, high-power laser systems, such as the
National Ignition Facility in the United States,1,2 Laser
Megajoule in France,3 and the SGIII laser facility in
China,4 the ultraviolet optical lifetime of fused silica must
be increased. The polishing contaminants in the near-surface
region of optical components can absorb sub-band gap light
and produce a local heating that can initiate a material dam-
age.5 Many experimental facts have shown that absorbing
nanometer-sized inclusions are responsible for the initiation
of the damage process: an increase of the damage thresholds
with purification of subsurface of fused silica;6,7 a spatial
variation of the damage threshold on the surface or in
bulk of optical substrates;8,9 and a dependence of the damage
threshold on the irradiation spot-size and wavelength.10,11

However, in most cases, the impurities are not identified
by modern optical techniques since they are nanoscale
size and are distributed at low concentration.12

It is obvious that the inclusion-initiated damage has a
statistical character because of the spatial distribution of
inclusions in a sample.10 The theoretical studies of inclu-
sion-initiated damage were based on the resolution of
Fourier equation. 13–16 However, these models have not
been substantiated enough to explain the statistical character
in experiments. The information on damage density and
damage threshold of precursors can be extracted from the
experimental curves of damage probability.11,17 Feit and
Rubenchik have presented a model18 that the size distribution
of nanoabsorbers is related to the damage density and dam-
age probability, which predicts the dependence of damage
density on pulse duration.

In this paper, we go further to relate the contents of vari-
ous impurities measured from the subsurface layers of differ-
ent samples to damage probability. In Sec. 2, based on
calculation of absorption of spherical particles and then

solving the heat equation, for various particles, the critical
fluence required to initiate damage can be calculated.
Considering the fit distribution parameters, the laser damage
probability on the surface of fused silica has been calculated.
In Sec. 3, the subsurface components of impurities for differ-
ent samples are determined by inductively coupled plasma
optical emission spectrometry (ICP-OES) and the data
points of laser damage probability have been measured.
Subsequently, the theoretical model presented has been
used for analyzing the effect of various impurities on damage
probability.

2 Theoretical Model

2.1 Critical Fluence

Contaminants detected include the major polishing com-
pound components (Ce or Zr from CeO2 or ZrO2), and
other metals (Fe, Cu, Cr) induced by the polishing step or
earlier grinding steps. Al is present largely because of the
use of Al2O3 in the final cleaning process. Al2O3 and
ZrO2 are nonabsorbing materials at 355 nm, so we just con-
sider CeO2, Cu, Fe, and Cr particles in the simulation. With
the improvement of surface-micromachining process, few
100-nm particles can be identified by classical optical tech-
niques and can be removed from the subsurface of fused
silica, so the particle radius of <100 nm was simulated in
the model. For simplification, we only consider the shape
of a sphere, although it is not necessarily needed in all
cases.19 The temperature distribution is necessary for evalu-
ating the critical fluence required to initiate damage, and the
spherical particle heating under the laser radiation is
described by the equation of heat conduction.

CiðTÞρi
∂Ti

∂t
¼ ∇½χiðTÞ∇Ti� þ

σI
V
fðtÞθðR − rÞ; (1)

where ρ, χðTÞ, and CðTÞ present density, thermal conduc-
tivity, and thermal capacity, respectively [values for T up
to 2200 K (Ref. 19)]. I and fðtÞ are maximum intensity
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and temporal shape of laser pulse. A subscript i has two val-
ues: i ¼ p for an inclusion and i ¼ h for a host material. We
consider a Gaussian temporal profile, fðtÞ ¼ exp
½−4ðt2∕τ2Þ�, for consistency with the experimental condition.
θðxÞ is a function defined as θðxÞ ¼ 0 at x < 0 and θðxÞ ¼ 1
at x ≥ 0. σ is the absorption cross-section of the inclusion,
and V ¼ ð4∕3ÞπR3 is the inclusion volume. The material
thermal and optical parameters for calculation are exposed
in Refs. 20 and 21. The absorption cross-section σ is calcu-
lated with the Mie theory.22

Qext ¼
2π

k2
X∞
n¼1

ð2nþ 1ÞReðan þ bnÞ; (2)

Qsca ¼
2π

k2
X∞
n¼1

ð2nþ 1Þðjanj2 þ jbnj2Þ; (3)

σ ¼ Qext −Qsca; (4)

where Qext and Qsca, respectively, are the extinction cross-
section and scattering cross-section. k ¼ 2πN∕λ, where N
is the optical index of host material and λ is the wavelength
of irradiation. an and bn are the scattering coefficients deter-
mined with continuity relations.

We plotted in Fig. 1 the absorption cross-section of vari-
ous particles (CeO2, Cu, Fe, and Cr) embedded in fused
silica. We can see from Fig. 2 that the absorptivity of
CeO2 particles is much lower than others (Cu, Fe, and
Cr) with the same size.

Considering the Fourier transform of the temperature,
Eq. (1) can be written as

1

r2
∂
∂r

�
r2

∂T̂i

∂t

�
þ α2i T̂i ¼ −

σIθðR − rÞ
2VχpðTÞ

ffiffiffi
π

p
τ exp

�
−
τ2ω2

16

�
;

(5)

where αi ¼ ½ωρiCiðTÞ∕2χiðTÞ�1∕2ð1þ iÞ. Applying the limit
condition, the solutions can be expressed as

T̂pðr;ωÞ ¼
ApI

r

h
expðiαprÞ − expð−iαprÞ

i

−
σI

2Vα2pχpðTÞ
ffiffiffi
π

p
τ exp

�
−
τ2ω2

16

�
; (6)

T̂hðr;ωÞ ¼
AhI
r

expðiαhrÞ; (7)

where Ap and Ah can be obtained by use of the boundary
condition [T̂pðRÞ ¼ T̂hðRÞ, χpðTÞ∂T̂p∕∂rjr¼R ¼ χhðTÞ∂T̂h∕
∂rjr¼R). Then, the temperature Ti in the inclusion and host
material can be obtained by numerical inverse Fourier trans-
form. Damage is assumed to take place when maximum tem-
perature at the particle–host material interfaces reaches a
critical value (∼2200 K).23 Thus, the critical fluence Fc
required to reach the critical temperature can be expressed as

Fc ¼
Z þ∞

−∞
IfðtÞdt

¼ ðπÞ32RτTc

�
maxtð

XN
ω¼−N

Ah expðiαhR − iωtÞΔωÞ
�−1

. (8)

We consider that various particles embedded in fused
silica are irradiated at 355 nm during pulse duration of
10 ns, and the critical fluence as a function of particle radius
has been plotted in Fig. 2.

We can see from Fig. 2 that CeO2 particles require higher
fluence to initiate damage when the particle radius
is <100 nm.

Fig. 1 The absorption cross-section calculated at 355 nm as a func-
tion of particle radius for various particles.

Fig. 2 Critical fluence calculated as a function of particle radius for
various particles.
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2.2 Laser Damage Probability on the Surface of
Optical Materials

We assume that the breakdown is reached if a particle is
irradiated with fluence higher than Fc, and the damage prob-
ability can be theoretically calculated based on the distribu-
tion law of particles. When the damage precursors are
assumed to be subsurface inclusions, the laser damage prob-
ability can be expressed as a function of fluence F.10

PðFÞ ¼ 1 − exp

�
−
Z

F

0

gðFcÞSFc
ðFÞdFc

�
; (9)

where SFcðFÞ is the region within the spot size with fluence
F greater than critical fluence Fc, SFcðFÞ ¼ ðπω2

0∕2Þ
lnðF∕FcÞ, with ω0 the beam radius. gðFcÞ presents the num-
ber of defects per unit area that damage at fluence between
Fc and Fc þ dFc. However, Fc depends on the particle size,
and the size distribution of particles is unknown. Hence, we
consider a power law distribution since this type of variation
is typically found for clusters.19

nðRÞ ¼ ðγ − 1Þd0
R1−γ
min − R1−γ

max

R−γ; (10)

where γ is a constant (its value often is 2 to 4 for natural
processes, such as optics contamination24), and d0 is the den-
sity of particles per unit of surface. Based on the relationship
between critical fluence and particle size, the upper limit
Rmax can be obtained from measured damage threshold
and the lower limit Rmin can be obtained where the experi-
mental damage probability is 1. The relationship between
gðFcÞ and density of particles d0 is
Z

∞

0

gðFcÞdFc ¼ d0: (11)

With this model we have the ability to describe laser dam-
age on the surface of fused silica as function of fluence F by
choosing two physical characteristics: the size distribution of
particles γ and their density d0 on the subsurface of optical
materials. By choosing the fit distribution parameters d0 and
γ, we can insert the Rmin and Rmax from sample S1
(see Table 1) to calculate the laser-induced damage probabil-
ity based on the relationship between critical fluence and
particle radius.

Figure 3 shows that damage probability initiated by CeO2

particles increases as the density of particles d0 increases,
and decreases as the parameter of size distribution γ

increases. In order to identify the influence of various par-
ticles on damage probability, we plotted in Fig. 4 the curves
of laser damage probability initiated by various particles cal-
culated with same parameters d0 ¼ 1 × 106 mm2 and γ ¼ 3.
From Fig. 4, we can see that considering the size distribution
from sample S1 as seen in Table 1, CeO2 particles have a
greater damage probability than others (Cu, Fe, and Cr)
with the same distribution parameters d0 and γ.

3 Experiment
The experimental setup for laser-damage test has been
described in detail elsewhere,11,17 and only a brief descrip-
tion is given here. The data points of laser damage proba-
bility are measured at 355 nm using injected Nd:YAG laser
with the Gaussian temporal profile. The effective pulse
duration (at 1∕e) is 10 ns. In order to obtain typical damage
probability in larger range of fluence, the small spot diam-
eter of 8 μm (at 1∕e2) is chosen in the test. The error of

Table 1 The values for Rmin and Rmax of different particles from
samples S1 to S4.

Rmin, Rmax (nm) CeO2 Cu Fe Cr

S1 37, 50 9, 13 11, 15 13, 16

S2 33, 45 8, 11 10, 13 12, 14

S3 32, 38 7, 10 9, 12 11, 13

S4 30, 36 6, 9 8, 11 10, 12

Fig. 3 Laser damage probability initiated by CeO2 particles with dif-
ferent distribution parameters d0 and γ.

Fig. 4 Laser damage probability initiated by various particles with
same distribution parameters (d0 ¼ 1 × 106 mm2 and γ ¼ 3).
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measured spot diameter is ∼140 nm. The damage test 1-on-
1 is applied with a large number of points to obtain a reli-
able measurement. We observe the 50 different regions
under the laser irradiation at each fluence F, and each
data point PðFÞ is plotted by counting the number of dam-
age regions at each fluence F. Energy of the incident beam
is measured with a calorimeter, and the fluence fluctuations
have a standard deviation of ∼10%. To have a good accu-
racy of measurement, the test procedure of damage proba-
bility is repeated 10 times and the deviation ▵P of average
value is <0.08. In order to identify the effect of the contents
of various impurities on laser damage probability, the com-
ponents of impurities from subsurface layer are determined
by ICP-OES and the data points of damage probability have
been measured.

The fused silica samples (S1, S2, S3, S4) polished by
cerium oxide slurry with different polishing levels were
used in the experiment. Because of insufficient polishing
process, there are more structural defects (per area), such
as submicroscopic cracks, pores, and indentations, observed
on the surface of samples S3 and S4. The size of the samples
is 35 × 35 × 3 mm. After accurate weighing and thickness
measurement, ∼1 μm of fused silica was digested by ultra-
pure grade hydrofluoric acid solution during 7 min. The
masses of subsurface layer digested, respectively, were
0.00215, 0.00243, 0.00256, and 0.002695 g. The contents
of impurities can be obtained by suitable spectral analysis.
The contents of CeO2 and Al2O3 incorporated during polish-
ing and cleaning process can be calculated based on the con-
tents of Ce and Al measured by ICP-OES. Table 2 gives the
contents of main impurities from the subsurface layer.

We can see from Table 2 that the contents of CeO2 impu-
rities have much more than others and have large distinction
in different samples. In order to relate the contents of various
impurities to damage probability, the impurities are assumed
to be spherical and their mass m (per area) has a homo-
geneous distribution on the subsurface of fused silica.
Thereby, the density (per area) of particles d0 can be calcu-
lated from Eq. (10).

d0 ¼
m
ρS

�Z
Rmax

Rmin

4

3
π

ðγ − 1Þ
R1−γ
min − R1−γ

max

R3−γdR

�
−1
; (12)

where S is the surface area of the samples and ρ is the mass
density of the particles. In order to make the shape of damage
probability curves more consistent with experimental data,
the parameter γ is set to 3. The values for Rmin and Rmax

of different particles, which are used in the calculation,
can be obtained based on the description in Sec. 2.1, and
they have been summarized in Table 1 from samples S1
to S4. Then, according to the critical fluence as a function
of particle radius as seen in Fig. 2, the damage density
gðFÞ can be expressed as25

gðFÞ ¼
Z

Rmax

Rmin

nðRÞdR: (13)

Substituting Eq. (13) into Eq. (9), the curves of damage
probability from samples S1 to S4 can be calculated. The
scheme for calculation has been presented in Fig. 5.

Figure 6 shows the experimental data points of damage
probability measured on the surface of fused silica and theo-
retical curves initiated by impurities. As seen in Fig. 6, the
smaller particle is required to absorb more fluence to reach
breakdown. Thus, the damage threshold increases from sam-
ples S1 to S4 because the upper limit Rmax decreases as seen
in Table 1. Cu and Cr impurities have a very weak influence
on experimental damage probability since their contents on
the subsurface of the samples are very low. On the contrary,
CeO2 and Fe impurities are closely related to the damage
probability when the levels of contents are high as seen in
sample S1. We can also notice that for the samples with
low CeO2 contents (S2, S3, and S4), this correlation is
weaker, and it has a good agreement with experimental
data on CeO2 contents dependence of damage density.26

In the case of CeO2 impurities, as the dramatic decrease
of the contents from samples S1 to S4, the damage density
will decrease according to our calculation. As a conse-
quence, the damage probability induced by the laser pulse
with same fluence will decrease. Obviously, a large discrep-
ancy is found between theory and experiment in samples S3
and S4 since there are more structural defects located on the
subsurface of samples from insufficient polishing process.
These structural defects with a spatial distribution add the
absorbing centers near the surface27 and cause more damage
sites than expected from the distribution of impurities, so the

Table 2 The contents of main impurities from subsurface layer of
fused silica (μg∕g).

Sample CeO2 Cu Fe Al2O3 Cr

S1 1484.2 17.6 37.1 19.4 16.4

S2 937.3 15.2 27.3 17.3 8.6

S3 638.9 12.8 39.2 22.6 13.2

S4 333.8 6.68 23.5 15.4 5.6
Fig. 5 The scheme for calculating damage probability.
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measured laser damage probability is found to be larger than
theoretical calculation.

4 Conclusion
A model has been presented in order to relate the distribution
properties of various impurities on the subsurface of fused
silica to damage probability. The theoretical curves of dam-
age probability initiated by the impurities having a given
density and size distribution have been obtained. The data
points of damage probability on the surface of fused silica
have been measured. Meanwhile, the contents of impurities
from the subsurface layer of fused silica have been deter-
mined by ICP-OES. The correlation of different contents
of impurities to damage probability has been analyzed,
and it has a good agreement with obtained results. This
model is of interest for identifying the influence of various
impurities induced by polishing, grinding, and cleaning
processes on laser damage probability, and it can also be
applied to investigate laser damage on surface of other opti-
cal substrates or films.
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