
Neighbor-T: Neighborhood transformer aggregation for enhancing

representation of out-of-knowledge-base entities

Jing Xiea, Jingchi Jianga, Jinghui Xiaob, Yi Guan*a

aSchool of Computer Science, Harbin Institute of Technology, Harbin, China; bNoah’s Ark Lab,

Huawei Technologies, Beijing, China

ABSTRACT

Knowledge representation learning (KRL) aims to obtain the embedding of entities and relations from the information of

knowledge graph (KG). Most existing methods can only model the entities in the training data, while failing to

generalize to out-of-knowledge-base (OOKB) entities which only appear in the testing. To solve this issue, one common

approach is to train an aggregator by leveraging the auxiliary knowledge such as neighbor information and entity

descriptions. In this work, we propose a novel aggregation model called neighborhood transformer (Neighbor-T) to

enhance the representations of OOKB entities. Compared with previous methods, Neighbor-T shows effectiveness on
neighbor information aggregation because of self-attention mechanism. Experiments demonstrate that our enhanced

representation outperforms the state-of-the-art on two knowledge graph completion tasks under OOKB setting: triple

classification and entity prediction.

Keywords: Knowledge base representation, out-of-knowledge-base entity, transformer

1. INTRODUCTION

Large-scale knowledge graphs (KGs) such as WordNet1, Wikidata2 and Freebase3 collect a mass of real-world facts in

the form of triples. The nodes in KGs represent entities and edges represent relations. A piece of knowledge is often

formalized as (ℎ, 𝑟, 𝑡) where ℎ and 𝑡 are entities and 𝑟 is relation. For example,

(𝐶𝑜𝑙𝑢𝑚𝑏𝑖𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎)

represents the fact that 𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎 is the student of 𝐶𝑜𝑙𝑢𝑚𝑏𝑖𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 . In order to efficiently support

downstream tasks such as question answering, machine reading comprehension and link prediction, various KG

embedding models4-7 have been proposed which projects symbolic entities and relations into continuous vector spaces. It

learns the embedding for each entity and relation according to the triples in KGs.

Although the scale of current KGs is large, they all suffer from the incompleteness problem. The “close world

assumption” assumes that all entities are present in the training data. And they directly use their embeddings in the

downstream task. However, new entities keep appearing in the real world, and the previous works cannot provide an

efficient solution except retraining the whole model. These new entities are called out-of-knowledge-base (OOKB)

entities8, which should be represented in a more effective way.

Two triple classification examples under OOKB setting. Red circles are OOKB entities and blue circles are existing

entities in KG. Triples in the left box are auxiliary triples. Our goal is to classify whether 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 is the true relation

between the OOKB head entity and the existing tail entity in KG.

Our experience shows that new entities do not appear individually. They always come with either the triples in contexts

or the descriptions of new entities. Thus, we can use this information to construct the representation of OOKB entities.

This paper focuses on making use of triple information instead of the description because not every KG’s entity has a

text description but each entity should at least appear in a triple. These triples contain both the new entity and the

existing entity of KG are called auxiliary triples. Recent works8-10 point out that is feasible to train a neighbor aggregator

to represent OOKB entities by using auxiliary triples. When a new entity occurs, they first find its all relevant auxiliary

triples, then use the aggregator to incorporate all information of these triples to obtain the entity’s embedding. Although

*guanyi@hit.edu.cn

International Conference on Computer Application and Information Security (ICCAIS 2021),
edited by Yingfa Lu, Changbo Cheng, Proc. of SPIE Vol. 12260, 1226002 · © The Authors.

Published under a Creative Commons Attribution CC-BY 3.0 License · doi: 10.1117/12.2637402

Proc. of SPIE Vol. 12260 1226002-1

these works achieve good results in OOKB entity representation, their embeddings can be further enhanced without extra

information.

Figure 1. Two triple classification examples under OOKB setting. Red circles are OOKB entities and blue circles are existing entities

in KG. Triples in the left box are auxiliary triples. Our goal is to classify whether location is the true relation between the OOKB head
entity and the existing tail entity in KG.

This paper concentrates on using graph contextual information11 to enhance representations of OOKB entities. Each

entity in the KG has different contextual information. Figure 1 illustrates two triple classification examples of “when

giving an OOKB head entity and an existing tail entity in KG, does the shown relation correctly hold between them”. For

the entity 𝐶𝑜𝑙𝑢𝑚𝑏𝑖𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦, its contextual information are four neighbors, while for the entity 𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎

when being the neighbor of 𝐶𝑜𝑙𝑢𝑚𝑏𝑖𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 , its contextual information is the other three neighbors of

𝐶𝑜𝑙𝑢𝑚𝑏𝑖𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦. To the best of our knowledge, the current state-of-the-art (SOTA) aggregator of Logic Attention

based Neighborhood aggregation (LAN)9 only uses the contextual information of the OOKB entities, while neglects the

contextual information of neighbors. In our example, we can find (𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛_𝑠𝑡𝑢𝑑𝑒𝑛𝑡, 𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎) is the

neighbor of both 𝐶𝑜𝑙𝑢𝑚𝑏𝑖𝑎 𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 and 𝑃𝑢𝑛𝑎ℎ𝑜𝑢 𝑆𝑐ℎ𝑜𝑜𝑙. However, 𝐵𝑎𝑟𝑎𝑐𝑘 𝑂𝑏𝑎𝑚𝑎 has different alumnus when

he studies in different school. Thus, this neighbor should propagate different information to its head entities. In this

work, we utilize Transformer to capture contextual information of neighbor. The new aggregator is named Neighbor-T,

and we used it after LAN to enhance representations of OOKB entities. Our main contributions are three-folds:

• We propose a novel aggregator Neighbor-T to capture contextual information of neighbors of the OOKB entity.

• We propose a three-stage training method to learn parameters when we sum the outputs of Neighbor-T and LAN to

construct enhanced representations.

• We formulate two tasks of knowledge base completion (KBC) tasks under OOKB settings, and our method

outperforms the SOTA.

2. RELATED WORK

Here we survey two topics related to this work: OOKB entity representation and using Transformer to capture contextual

information.

2.1 OOKB entity representation

The methods of OOKB entity representation fall into two categories: (1) using the text description of the OOKB entity.

The typical work are references12-15. (2) using the neighbors of the OOKB entity from auxiliary triples. The typical work

are references8-10. The text descriptions provide rich information for the entity, however, this constraint is too strong that

not all KGs contain the information of entity description. On the other hand, we can always extract triples from the text

as auxiliary triples to represent the OOKB entity. Thus, our work focuses on the second category. Reference8 is the first

work to use graph neural network (GNN) to aggregate neighbor information which proves GNN based aggregators

Proc. of SPIE Vol. 12260 1226002-2

perform better than the simple approximation like TransE. The drawback of this work is that treats all neighbor equally.

To address that issue, Wang et al.9 and Zhao et al.10 both consider the difference among neighbors. The former work

considers in more respects in which the aggregator is aware of redundancy and query relation. It reduces the impact of

similar neighbor information and measure the importance of neighbors by the query relation. For example, if asking

someone’s 𝑛𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦, the aggregator need to concern more on neighbors which contain 𝑏𝑖𝑟𝑡ℎ𝑝𝑙𝑎𝑐𝑒 and 𝑙𝑖𝑣𝑒_𝑖𝑛 other

than 𝑔𝑒𝑛𝑑𝑒𝑟. Besides, reference16 propose a model that only uses graph structure to predict relations between nodes.

However, their work only considers the relations information and can not distinguish entities.

2.2 Using transformer to capture contextual information

The Transformer model has been widely used in recent researches such as pre-trained language mode11, KG

embedding17-18 and machine translation19. The core of Transformer is self-attention mechanism20, that each token in the

input sequence can gather information from other tokens. Reference17 uses a pre-trained language model Bert to get KG

representations. They concatenate the head name, relation name and tail name in one triple as input sequence, then fine

tune the parameters of the model on the triple classification task. Each word in the sequence can get information from the

other words. Reference18 only inputs one triple with entity and relation IDs into Transformer per time, and both entity

and relation can obtain information from the opposite side. Unlike the traditional training objective of KG-embedding
models, Transformer based models use a special task of “masked token prediction” to learn parameters. In the training

stage, a head or tail is masked and the model need to predict the true entity. However, the above two mentioned works

are not under the OOKB setting. Moreover, they both model the single triple. In this work, we study a more complex

scenario which deals with several triples at one time.

3. PRELIMINARIES

In this section, we formally define the OOKB entity problem in knowledge graph completion (KBC) and detail the

OOKB entity representation.

3.1 OOKB entity problem definition

A knowledge graph 𝐺 consists of an entity set ℰ, a relation set ℛ and a collection of true triples {(ℎ, 𝑟, 𝑡)} ⊆ ℰ × ℛ × ℰ.

For each triple (ℎ, 𝑟, 𝑡), we define the reverse relation 𝑟−1 and add (ℎ, 𝑟−1, 𝑡) to 𝐺 . Triple classification and entity
prediction are two important tasks in KBC. Unlike the conventional settings of both tasks where all entities in the test

procedure have been trained, this work considers a challenging scenario that unseen entities are given in the test

procedure. We define the unseen entity as 𝑒, 𝑒 ∉ ℰ and the unseen entity set as ℰOOKB. The new triple classification and

entity prediction tasks are defined as follows.

Task 1 Triple classification with OOKB entity

Given a triple (ℎ, 𝑟, 𝑡), 𝑟 ∈ ℛ, where ℎ ∈ ℰOOKB or 𝑡 ∈ ℰOOKB, the task is to train a model to classify whether the triple is

true or false.

Task 2 Entity prediction with OOKB entity

Given a head entity ℎ, ℎ ∈ ℰOOKB and a relation 𝑟, 𝑟 ∈ ℛ, or given a tail entity 𝑡, 𝑡 ∈ ℰOOKB and a relation 𝑟, 𝑟 ∈ ℛ, the

task is to train a model which ranks all tail candidate entities 𝑡, 𝑡 ∈ ℰ or ranks all head candidate entities ℎ, ℎ ∈ ℰ.

The main problem of the two tasks is how to represent the OOKB entity. For both tasks, we import the auxiliary triples

to construct the representation of OOKB entities, which defined as 𝐺𝑎𝑢𝑥 = {(ℎ, 𝑟, 𝑡)|𝑟 ∈ ℛ, ℎ ∈ ℰOOKB , 𝑡 ∈ ℰ} ∩
{(ℎ, 𝑟, 𝑡)|𝑟 ∈ ℛ, ℎ ∈ ℰ, 𝑡 ∈ ℰOOKB}. Here, we also add (ℎ, 𝑟−1, 𝑡) to 𝐺𝑎𝑢𝑥. For each OOKB entity 𝑒, we can now use the

auxiliary triples which contains 𝑒 to represent it.

3.2 OOKB entity representation

To obtain the OOKB entity representation, we need to construct an aggregation to integrate all neighbor information of

this OOKB entity which provided by the auxiliary triples. We define 𝑁𝑡(𝑒) as neighbor triples, 𝑁𝑡(𝑒) = {(𝑒, 𝑟, 𝑒′)|𝑟 ∈
ℛ, 𝑒′ ∈ ℰ}. We also define 𝐯𝑒 ∈ ℝ𝑑 as a d-dimensional vector to representation entity 𝑒, and define 𝐯𝑟 ∈ ℝ𝑑 to represent

relation 𝑟. According to the exist method21-22, the aggregation consists of transition function 𝑇(𝐯𝑒) and pooling function

𝑃(𝐯𝑒). These two components are described below in detail.

Proc. of SPIE Vol. 12260 1226002-3

Transition Function. For each OOKB entity 𝑒, its neighbor triples may contain different kinds of relation and entities.

The transition function 𝑇(𝒗𝑒) aims to apply the influence of neighbor relation to the representation of the neighbor

entity, which can propagate the relation-special information to the OOKB entity. According to the way of relation

projection, transition function contains three categories:

Non-relation projection. For an OOKB entity 𝑒, its neighbor triple (𝑒, 𝑟, 𝑒′) ∈ 𝑁𝑡(𝑒) propagates the whole information of

the entity 𝑒′ to the 𝑒:

𝑇(𝐯𝑒) = 𝐯𝑒′ (1)

Distance-based relation projection. For an OOKB entity 𝑒 , its neighbor triple information depends on the distance

between 𝑒 and 𝑒′, the typical examples inspired by TransE and TransH are listed:

𝑇(𝐯𝑒) = 𝐯𝑒′ − 𝐯𝑟 (2)

𝑇(𝐯𝑒) = 𝐯𝑒′ − 𝐰𝑟
⊤𝐯𝑒 ′𝐰𝑟 (3)

where 𝐰𝑟 and 𝐰𝑟
⊤ construct a relation-related hyperplane23.

NN-based relation projection. For an OOKB entity 𝑒, we use a relation-specific matrix 𝐌𝑟 to reflect the influence of

relation 𝑟 on entity 𝑒′, the examples of the transition function are listed:

𝑇(𝐯𝑒) = tanh(𝐌𝑟𝐯𝑒′) (4)

𝑇(𝐯𝑒) = ReLU(𝐌𝑟𝐯𝑒′) (5)

Pooling Function. For each OOKB entity e, it often has many neighbor triples. Thus, pooling function is used to

summarize all these neighbor information. Typical pooling function P(𝐯e) contains sum pooling, mean pooling and max

pooling, which all satisfy permutation invariance. That means all the input of neighbors are unordered. These three

pooling functions are defined by:

𝑃(𝐯𝑒) = ∑ 𝐯𝑒(𝑒,𝑟,𝑒′)∈𝑁𝑡(𝑒) ′ (6)

𝑃(𝐯𝑒) =
1

𝑁
∑ 𝐯𝑒(𝑒,𝑟,𝑒′)∈𝑁𝑡(𝑒) ′ (7)

𝑃(𝐯𝑒) = max({𝐯𝑒 ′}(𝑒,𝑟,𝑒′)∈𝑁𝑡(𝑒)) (8)

where 𝑁 is the total number of 𝑁𝑡(𝑒) and 𝑚𝑎𝑥 is the element-wise max function.

Unlike the above pooling functions that treat all neighbor equally, attention-based pooling assumes the different neighbor

contributes the different information. For each neighbor, pooling function assigns a weight to enlarge or reduce its

information, and then sum all changed information together.

4. PROPOSED MODEL

For a triple (𝑒, 𝑞, 𝑒′), 𝑞 represents the query relation in the triple9, and 𝑟 represents the neighbor relation of the entity 𝑒.

We aim to train an aggregator that represents 𝑒 by its neighbor information. In this section, we present a comprehensive

introduction of the aggregator. Since we build our model based on LAN, we will first introduce it and then show the

details of Neighbor-T. We also present the details of training procedure.

4.1 LAN

The core of LAN is the attention mechanism. In the aggregator, neighbors should contribute differently to the 𝐯𝑒

according to its importance in representing 𝑒. LAN donates two different kinds of attention mechanisms: the first one is

the logic rule mechanism which captures the attention between the neighbor relation 𝑟 and the query relation 𝑞; the

second is the neural network mechanism which captures the attention between the neighbor entity 𝑒𝑖 , 𝑒𝑖 ∈ 𝑁𝑡(𝑒) and the

query relation 𝑞. LAN implements the confidence of logic rule 𝑟1 ⇒ 𝑟2 as follows:

𝒫(𝑟1 ⇒ 𝑟2) =
∑ 𝕝𝑒∈ℰ (𝑟1∈𝑁𝑡(𝑒)∧𝑟2∈𝑁𝑡(𝑒))

∑ 𝕝𝑒∈ℰ (𝑟1∈𝑁𝑡(𝑒))
 (9)

The function 𝕝(x) here is a logic function, which equals 1 when x is true and 0 otherwise. According to this equation, we

easily find that the confidence is larger if relation 𝑟1 and 𝑟2 often appear as the entity’s neighbor relation at the same

Proc. of SPIE Vol. 12260 1226002-4

time. Thus, for the entity 𝑒, LAN calculates all confidences of neighbor relation 𝑟 and query relation 𝑞 to measure which

neighbor is more important. However, the entity may have many neighbors and some of them provide similar

information, which will cause redundancy. The logic rule mechanism is defined as follows:

𝛼𝑗|𝑖,𝑞
𝐿𝑜𝑔𝑖𝑐

=
𝒫(𝑟⇒𝑞)

max({𝒫(𝑟′⇒𝑟)|𝑟′∈𝑁𝑡(𝑒)∧𝑟′∉𝑟})
(10)

where 𝑗 is the 𝑗-th neighbor of entity 𝑒𝑖. We can find that if the neighbor relation 𝑟 can be implied by another neighbor

relation 𝑟′, its contribution to represent entity 𝑒𝑖 will be decreased. This logic rule attention uses the statistical relevance

of relations to distinguish the neighbor information.

The neural network mechanism adopts an attention network to measure the relevant of neighbor entity and query

relation24, which is defined as:

𝛼𝑗|𝑖,𝑞 = 𝐮𝑎
⊤ ⋅ tanh(𝐖𝑎 ⋅ [𝐳𝑞; 𝑇(𝐯𝑒)]) (11)

where 𝐮𝑎 and 𝐖𝑎 ∈ ℝ𝑑×2𝑑. 𝐳𝑞 ∈ ℝ𝑑 is a relation-aware embedding representation of the query relation. 𝑇(𝐯𝑒) here uses

equation (3). To normalize all neighbor attention weights, the softmax function has been used:

𝛼𝑗|𝑖,𝑞
𝑁𝑁 = softmax(𝛼𝑗|𝑖,𝑞) =

exp(𝛼𝑗|𝑖,𝑞)

∑ exp𝑒𝑗∈𝑁𝑡(𝑒𝑖) (𝛼𝑗|𝑖,𝑞)
 (12)

Finally, LAN incorporates two attention mechanism together to gather all neighbor information:

𝐯𝑒𝑖
𝐿𝐴𝑁 = ∑ (𝛼𝑗|𝑖,𝑞

𝐿𝑜𝑔𝑖𝑐
+ 𝛼𝑗|𝑖,𝑞

𝑁𝑁)𝑒𝑗∈𝑁𝑡(𝑒𝑖) 𝑇(𝐯𝑒) (13)

4.2 Neighbor-T

As we want to train an aggregation to represent an entity by its neighbor information, we need to take advantages of the

graph contextual information. The concept of contextual information first comes from language model. For a word in the

text, its contextual information is often a sequence of words before or after it, which implies rich semantic patterns. For

an entity in the KG, it also has contextual information. We define its neighbor entity and neighbor relation as graph

contextual information. According to this definition, we could find some special graph semantic patterns and use them to

construct the entity’s embedding representation.

Transformer model is successfully used to capture contextual information in the language model by its self-attention

mechanism. In this work, we conduct Transformer in the KG to capture graph contextual information and aggregate them

to represent the entity. We name this aggregation as Neighbor-T. The architecture of Neighbor-T is shown in Figure 2.

Firstly, for each entity 𝑒𝑖, we extract its neighbor triple set 𝑁𝑡(𝑒𝑖). The input sequence consists of two parts: neighbor

entity sequence and neighbor relation sequence. In transition layer, equation (3) is used to conduct the influence of the

relation on the corresponding entity, and we can get the transitional embedding 𝑇 (𝐯𝑒𝑗
) of each neighbor. Secondly, we

feed transitional embeddings of all neighbors to a Transformer to exchange information by self-attention mechanism. At

this stage, each neighbor has a transformed embedding 𝑇′ (𝐯𝑒𝑗
), which has incorporated the contextual information from

the other neighbors. Lastly, we sum all transformed embeddings to obtain the output embedding:

𝐯𝑒𝑖

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑇
= ∑ 𝛼𝑗|𝑖,𝑞

𝐿𝑜𝑔𝑖𝑐
𝑒𝑗∈𝑁𝑡(𝑒𝑖) 𝑇′ (𝐯𝑒𝑗

) (14)

Here we also use the prior statistical attention weights 𝛼𝑗|𝑖,𝑞
𝐿𝑜𝑔𝑖𝑐

 to fill the information gap between neighbor relation and

query relation.

Proc. of SPIE Vol. 12260 1226002-5

Figure 2. The architecture of Neighbor-T for entity representation.

4.3 Objective and model training

In the aggregation training stage, we can only get all training triples, which means there is no OOKB entity. Thus, for

each training triple, we treat its head entity and tail entity as OOKB entities in this sample and extract subgraphs of the

head entity and tail entity to construct the model input.

In this work, we propose a three-stage training method to learning parameters since we use Neighbor-T after LAN to

construct enhanced representations of OOKB entities. Firstly, we get the pre-trained embeddings of all existing entities

by training parameters of LAN. Since the amount of training triple is limited, we need to give Transformer a better

initialization. The frequently-used score function is to evaluate the possibility of a triple(ℎ, 𝑞, 𝑡). The score is larger when

the triple is likely to hold. Here, we use TransE to calculate the triple score:

𝑓(ℎ, 𝑞, 𝑡) = −|𝐯ℎ + 𝐯𝑞 − 𝐯𝑡|
𝐿1

(15)

where 𝐿1 is the L1 norm. We treat all triples in KG as positive sample and randomly corrupt the head or tail entity by

another entity to construct negative samples. Then we use margin-based loss function as our objective:

ℒ1 = ∑ [𝛾 − 𝑓(ℎ𝑖 , 𝑞𝑖 , 𝑡𝑖) + 𝑓(ℎ𝑖′, 𝑞𝑖 , 𝑡𝑖′)]+
𝑁
𝑖=1 (16)

where [𝑥]+ = 𝑚𝑎𝑥(0, 𝑥), 𝑁 is total number of positive and negative samples, and 𝛾 is the max margin between positive

and negative samples.

In the second stage, we train the parameters in Neighbor-T. It is notice that we fix all entity embeddings because they

have been trained in LAN. The prediction objective used here is to label the masked entity, which is to predict the true

entities of head and tail. For a masked entity 𝑒𝑖, we can obtain its output embedding 𝐯𝑒𝑖

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑇
 by Neighbor-T. Then

we calculate the probability of each candidate entity and use cross-entropy as the training loss:

ℒ2 = − ∑ 𝐲𝑖
𝑁
𝑖=1 log𝐩𝑖 (17)

𝐩𝑖 = softmax(𝐯𝑒𝑖

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑇
⋅ 𝐄) (18)

where 𝐄 ∈ ℝ𝑛×𝑑 is the matrix of the entity embeddings, 𝐲𝑖 is the weight vector of the true label distribution. Here we use

soft label strategy instead of one-hot label. 𝑁 is double amount of positive triples because we predict both head and tail

entities. This stage is used to make the model learn how to capture contextual information of neighbors.

Proc. of SPIE Vol. 12260 1226002-6

In the third stage, we sum the output embeddings of LAN and Neighbor-T to get a stronger representation of entities:

𝐯𝑒𝑖
𝑂 = 𝐯𝑒𝑖

𝐿𝐴𝑁 + 𝐯𝑒𝑖

𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟−𝑇
(19)

We train all parameters in LAN and Neighbor-T by Equation 16 in this stage. This is for finetuning the parameters in the

model to adapt two KBC tasks.

5. EXPERIMENTS

In this section, we demonstrate the effectiveness of Neighbor-T in two important KBC tasks under OOKB settings: triple

classification and entity prediction.

5.1 Experimental design

Datasets. Our experiments are all in OOKB settings, that is there are some OOKB entities in the testing. The previous

work8 has constructed nine datasets from WordNet11 (WN11)25: Head, Tail, Both-1000, 3000, 5000. Head, Tail. Both
are the position of OOKB entity, and 1000, 3000, 5000 is the amount of the testing triples which contain OOKB entities.

For example, Both-1000 has extracted 1000 triples from the original testing dataset of WN11, and each head and tail

entity of the triple are treated as OOKB entities. The original training dataset is split into the new training dataset and

auxiliary dataset. The original triples which do not contain OOKB entities are placed in the new training dataset and the

original triples which contain one OOKB entity are placed in the auxiliary dataset. The triples with two OOKB entities

are discarded. For the validation set, all triples which contains OOKB entities are also discarded to avoid the data

leakage. The above nine datasets are used for triple classification task. Wang et al.9 construct other ten datasets from

Freebase15K (FB15K)4 for entity prediction task in the same way: Head, Tail-5, 10, 15, 20, 25, where the number is the

percentage of the extracted testing triples. In this task, there is no Both setting because we cannot predict the missing

entity by another missing entity and the given relation. We directly use these two groups of datasets and the statistics for

them are in Tables 1 and 2.

Table 1. Statistics of constructed WN11 dataset.

Head Tail Both

1000 3000 5000 1000 3000 5000 1000 3000 5000

Training triple 108197 99963 92309 96968 78763 67774 93364 71097 57601

Auxiliary triple 4325 12376 19625 15277 31770 40584 18638 38285 48425

OOKB entities 348 1034 1744 942 2627 4011 1238 3319 4963

Average neighbor number 5.8 5.6 5.4 5.5 5.1 4.9 5.4 4.9 4.5

Table 2. Statistics of constructed FB15K dataset.

Head Tail

5 10 15 20 25 5 10 15 20 25

Training triple 188238 108854 71407 49456 37986 170672 99783 67651 46982 34126

Auxiliary triple 235746 249798 228484 205242 179656 254454 261341 243316 222200 195627

OOKB entities 1460 2082 2342 2544 2666 1330 1934 2207 2351 2415

Average neighbor number 41.5 31.6 25.5 21.1 17.7 39.4 30.9 25.4 21.3 17.9

Implementation Details. In triple classification task, we can calculate all scores by equation (15). For each relation 𝑟, we

select a threshold 𝜎𝑟 to classify the true triples if 𝑓(ℎ, 𝑟, 𝑡 >= 𝜎𝑞), and false triple in the other condition. In this task, we

use the classification accuracy as the evaluation metrics. The best 𝜎𝑟 is optimized by maximizing classification accuracy

on the validation triples. We adopt the same parameter configuration for all nine datasets: the learning rate is 0.001,

embedding dimension is 100, batch size is 512, margin is 300, and 64 neighbors are randomly selected for each entity,

Proc. of SPIE Vol. 12260 1226002-7

which are same as reference9. Because the scale of our training data is not as large as language model corpus, here we

only use one head and one-layer Transformer. We also use dropout strategy to avoid over-fitting the training data. The

dropout is set to 0.1.

In entity prediction task, we need to calculate the scores of all candidate entities to determine which is more likely to be

the tail entity when giving the head entity and relation, or to be the head entity when giving the tail entity and relation.
Here the candidate entities are all existing entities in the training data. After achieving the scores of candidate entities, we

rank them in descending order. The evaluation metrics here are mean rank (MR), mean reciprocal rank (MRR) and the

proportion of ranks no larger than 𝑛 (Hits@n, n=1,3,10). All results are under filtered setting4, that means any candidate

triple already exists in the train, or validation data needs to be removed before ranking. To align with LAN, we also

conduct experiments on Head-10 and Tail-10. The LAN parameters are same as them in triple classification task except

the margin changes to 1.0. The dropout here is 0.8 because these two datasets are easily over-fitting. We will give the

additional analysis about this point in the following.

Our training process is divided into three stages, we train the LAN with 500 epochs and train Neighbor-T with 1000

epochs. In triple classification tasks, we train the LAN+Neighbor-T with 100 epochs; and in entity prediction task, we

train it with 500 epochs. The reported results are the testing results performer best in validation data.

6. RESULTS AND DISCUSSION

6.1 Triple classification with OOKB entity

Table 3 shows the model comparison on nine triple classification datasets. We use three previous models as our

baselines. MEAN is the results of reference8, we directly list their results from the original paper. Results of LSTM and

LAN come from reference9. To our knowledge, LAN performs best in all nine datasets before our work is proposed.

Thus, we retrain the LAN with their released source code and the same parameter settings at least 5 times and list the

best results in LAN(ours). On the basis of LAN(ours), we train Neighbor-T and combine LAN and Neighbor-T to

represent entities. The table shows LAN+Neighbor-T achieves the best results in all Tail datasets and Both datasets,

which show our model are effective to capture contextual information of both OOKB entities and their neighbors. We

find results of Head datasets show a little low results than LAN(proposed), we conjecture it is because the head entities

in WN11 are naturally more coarse-grained, which need more information to describe them.

Table 3. Evaluation accuracy on triple classification.

Model
Head Tail Both

1000 3000 5000 1000 3000 5000 1000 3000 5000

Mean 0.873 0.843 0.833 0.840 0.752 0.692 0.830 0.733 0.682

LSTM 0.870 0.835 0.818 0.829 0.714 0.631 0.785 0.716 0.658

LAN(propose) 0.888 0.852 0.842 0.847 0.788 0.743 0.833 0.769 0.706

LAN(ours) 0.872 0.849 0.823 0.847 0.787 0.743 0.835 0.752 0.691

LAN+Neighbor-T 0.867 0.847 0.830 0.849 0.799 0.765 0.846 0.775 0.751

The results in the first three rows come from the original paper and the results in the last two rows are our

implementations.

6.2 Entity prediction with OOKB entity

Table 4 shows the model comparison on two entity prediction datasets: Head-10 and Tail-10. We also list the same three

baselines: MEAN from reference8 and LSTM and LAN(proposed) from reference9. According to the results, we find all

results (except Hits@10 in Head-10) of our model are better than LAN(ours). Furthermore, our combined representations

of LAN+Neighbor-T achieve the best performance of MRR and Hits@1 in both datasets. Unlike MR is sensitive to the

lower positions of the ranking, MRR evaluate the model more stably. Thus, we make sure that the embeddings come

from Neighbor-T can enhance the entity representation.

Proc. of SPIE Vol. 12260 1226002-8

Table 4. Evaluation results on entity prediction.

Model
Head-10 Tail-10

MR MRR Hits@10 Hits@3 Hits@1 MR MRR Hits@10 Hits@3 Hits@1

Mean 293 0.31 48.00 34.80 22.20 353 0.25 41.00 28.00 17.10

LSTM 353 0.25 42.90 29.60 16.20 504 0.22 37.30 24.60 14.30

LAN(propose) 263 0.39 56.60 44.60 30.20 461 0.31 48.20 35.70 22.70

LAN(ours) 250 0.38 55.80 43.20 29.10 434 0.31 46.50 35.20 22.30

LAN+Neighbor-T 228 0.40 55.60 44.50 31.80 393 0.32 47.50 35.80 23.40

Same as triple classification, the results in the first three rows come from the original paper and the results in the last two

rows are our implementations.

6.3 The relevance of proportion of OOKB entities and model effectiveness

According to Table 3, we find when using Neighbor-T to enhance entity representations of LAN in different datasets, its

improving capacity is different. We illustrate the relevance of proportion of OOKB entities and the improving capacity in
all Tail and Both datasets in Figure 3. The figure shows that with the amount of OOKB entities increasing, the relative

increasing percentage of the model is growing at the same time. Furthermore, the speed of the result growing could be

beyond the linear growth mode in Both datasets. That means, when we meet large amount of OOKB entity, Neighbor-T

can help LAN to achieve a stronger representation of the entity to avoid performance decreasing rapidly.

Figure 3. The relevance of proportion of OOKB entities and model effectiveness.

6.4 The influence of transformer over-fitting

As we have mentioned in the previous section, the Transformer’s performance will influence the final entity embeddings.

In our second training stage, we learn Transformer’s parameters by predicting the true entity throughout its neighbor

information. Because the Transformer has strong capacity in fitting training data, and the training amount is limited due

to OOKB settings, it is easily to cause over-fitting problem. When we use it to construct the representation of OOKB

entities, it may fall into some extremely fine-grained contextual semantic patterns. To figure out the impact of

Transformer’s performance on final entity embedding, we try different dropouts and evaluate the performance of entity
prediction. Figure 4 shows that when dropout increase, the Transformer prediction accuracy will decrease, which means

the model reduces its fitting capability at the same time. On the contrary, the results of MRR, Hits@10,3,1 increase. The

interpretation is the objective of Transformer is to predict the entity. In the second training stage, if transformer accuracy

is too high, it means the embeddings from Neighbor-T will always tend to represent the existing entities. Because the

average neighbor number of FB15K is much larger than WN11, it means entities in FB15K have more information and

easily to cause over-fitting problem. Thus, we assign dropout to 0.1 in triple classification task and 0.8 in the entity

prediction task.

Proc. of SPIE Vol. 12260 1226002-9

Figure 4. The influence of transformer’s over-fitting problem. The red line in all four subgraphs is Transformer accuracy, while the
blue line is MRR, Hits@10, Hits@3 and Hits@1 respectively.

7. CONCLUSION

In this paper, we propose a novel aggregator Neighbor-T based on LAN and evaluate it on two KBC tasks under the
OOKB setting. Neighbor-T shows effectiveness in utilizing neighbors’ contextual information to enhance OOKB entity

representations. The extensive experiments on two tasks demonstrate that the enhanced representations from our method

achieve the new state-of-the-art results on these tasks. In the future, we might consider utilizing a union model to

incorporate both kinds of mentioned graph contextual information to reduce scale of the model and conduct experiments

on more challenge KG tasks.

REFERENCES

[1] Miller, G. A., “WordNet: A lexical database for English,” Communications of the ACM, 38, 39-41 (1995).

[2] Vrandecic, D. and Krtoetzsch, M., “Wikidata: A free collaborative knowledgebase,” Communications of the

ACM, 57, 78-85 (2014).
[3] Bollacker, K., “Freebase: A collaboratively created graph database for structuring human knowledge,” Proc. of

the 2008 ACM SIGMOD Inter. Conf. on Management of Data, 1247-1250 (2008).

[4] Bordes, A., Usunier, N., Garcia-Duran, A. and Weston, J., “Translating embeddings for modeling multi-

relational data,” Proc. Advances in Neural Information Processing Systems, 2787-2795 (2013).

[5] Kazemi, S. M. and Poole, D., “Simple embedding for link prediction in knowledge graphs,” Proc. Advances in

Neural Information Processing Systems, 4284-4295 (2018).

[6] Zhang, S., Tay, Y. and Yao, L., “Quaternion knowledge graph embeddings,” Proc. Advances in Neural

Information Processing Systems, 2735-2745 (2019).

[7] Vashishth, S., Sanyal, S. and Nitin, V., “Composition-based multi-relational graph convolutional networks,”

Proc. of Inter. Conf. on Learning Representations, (2019).

[8] Hamaguchi, T., Oiwa, H. and Shimbo, M., “Knowledge transfer for out-of-knowledge-base entities: A graph

neural network approach,” Proc. of the Twenty-Sixth Inter. Joint Conf. on Artificial Intelligence, 1802-1808
(2017).

[9] Wang, P., Han, J. and Li, C., “Logic attention based neighborhood aggregation for inductive knowledge graph

embedding,” Proc. of the AAAI Conf. on Artificial Intelligence 33, 7152-7159 (2019).

[10] Zhao, M., Jia, W. and Huang, Y., “Attention-based aggregation graph networks for knowledge graph

information transfer,” Proc. of Pacific-Asia Conf. on Knowledge Discovery and Data Mining, 542-554 (2020).

[11] Devlin, J., Chang, M. W. and Lee, K., “BERT: Pre-training of deep bidirectional transformers for language

understanding,” Proc. of the 2019 Conf. of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies 1, 4171-4186 (2019).

Proc. of SPIE Vol. 12260 1226002-10

[12] Fan, M., Zhou, Q. and Zheng, T. F., “Representation learning of knowledge graphs with entity descriptions,”

Pattern Recognition Letters, 93, 31-37 (2016).

[13] Shi, B. and Weninger, T., “Open-world knowledge graph completion,” Proc. of the AAAI Conf. on Artificial

Intelligence 32 (1), (2018).

[14] Kong, F., Zhang, R. and Guo, H., “A neural bag-of-words modelling framework for link prediction in
knowledge bases with sparse connectivity,” The World Wide Web Conf., 2929-2935 (2019).

[15] Shah, H., Villmow, J. and Ulges, A., “An open-world extension to knowledge graph completion models,” Proc.

of the AAAI Conf. on Artificial Intelligence 33, 3044-3051 (2019).

[16] Teru, K. K., Denis, E. and Hamilton, W., L “Inductive relation prediction by subgraph reasoning,” arXiv

preprint, (2019).

[17] Yao, L., Mao, C. and Luo, Y., “KG-BERT: BERT for knowledge graph completion,” arXiv preprint, (2019).

[18] Wang, Q., Huang, P. and Wang, H., “CoKE: Contextualized knowledge graph embedding,” arXiv preprint,

(2019).

[19] Dehghani, M., Gouws, S. and Vinyals, O., “Universal transformers,” Inter. Conf. on Learning Representations,

(2018).

[20] Vaswani, A., Shazeer, N. and Parmar, N., “Attention is all you need,” Proc. Advances in Neural Information

Processing Systems, 5998-6008 (2017).
[21] Hamilton, W., Ying, Z. and Leskovec, J., “Inductive representation learning on large graphs,” Proc. Advances

in Neural Information Processing Systems, 1024-1034 (2017).

[22] Wu, Z., Pan, S. and Chen, F., “A comprehensive survey on graph neural networks,” IEEE Transactions on

Neural Networks and Learning System, 32, 4-24 (2020).

[23] Wang, Z., Zhang, J. and Feng, J., “Knowledge graph embedding by translating on hyperplanes,” Proc. of the

AAAI Conf. on Artificial Intelligence 14, 1112-1119 (2014).

[24] Bahdanau, D., Cho, K. and Bengio, Y., “Neural machine translation by jointly learning to align and translate,”

Inter. Conf. on Learning Representations, (2015).

[25] Socher, R., Chen, D. and Manning, C. D., “Reasoning with neural tensor networks for knowledge base

completion,” Proc. Advances in Neural Information Processing Systems, 926-934 (2013).

Proc. of SPIE Vol. 12260 1226002-11

