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Determination of optical scattering properties in turbid
media using Mueller matrix imaging
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Abstract. A need exists for the continued development of diagnostic
tools and methods capable of distinguishing and characterizing slight
differences in the optical properties of tissues. We present a method to
estimate the scattering coefficient contribution as a function of par-
ticle size in complex mixtures of polystyrene spheres. The experimen-
tal method we used is a Mueller matrix imaging approach. The Muel-
ler matrix encodes the polarization-dependent properties of the
sample and describes how a given sample will transform an incident
light polarization state. A partial least-squares approach is used to
form a model around a set of Mueller matrix image-based measure-
ments to accurately predict the individual scattering coefficient con-
tributions in phantoms containing 0.2, 0.5, 1, and 2 �m-diameter
polystyrene spheres. The results show individual scattering coefficient
contribution errors as low as 0.1585 cm−1 can be achieved. In addi-
tion, it is shown how the scattering type �i.e., Rayleigh and Mie� is
encoded within the Mueller matrix. Such methods may eventually
lead to the development of improved diagnostic tools capable of char-
acterizing and distinguishing between tissue abnormalities, such as
superficial cancerous lesions from their benign counterparts. © 2006
Society of Photo-Optical Instrumentation Engineers. �DOI: 10.1117/1.2363347�

Keywords: Mueller matrix; polarization; scattering; partial least squares.
Paper 05268RR received Sep. 19, 2005; revised manuscript received May 8, 2006;
accepted for publication May 15, 2006; published online Oct. 18, 2006.
1 Introduction
It is well known that through the characterization of the po-
larization effects in scattered light, useful information on the
properties of turbid media can be obtained. As early as 1976,
Bickel et al. found that Bacillus Subtilis suspensions affected
the angular distributions of the scattering matrix.1 Expanding
on this early work, Hielscher et al. investigated how radial
and azimuthal variations observed in diffusely backscattered
polarization images of intralipid and polystyrene sphere sus-
pensions changed with particle size, concentration, and the
anisotropy factor.2 Backman et al.3 and Bartlett et al.4 also
demonstrated how polarized light scattering spectroscopy can
be used to measure and characterize particle size distribution.
In regards to in vivo tissue characterization, Demos et al.5 and
Jacques et al.6 also reported on the use of backscattered po-
larized light for surface and subsurface imaging of biological
materials. In these investigations, it was found that through
the use of polarized light, the contrast of polarization-
sensitive structures in tissue could be significantly enhanced
to provide useful diagnostic information. Most recently, in
2004, Yaroslavsky et al.7 demonstrated how polarization-
based reflectance and fluorescence imaging can be used for
improved demarcation of skin tumors, and in 2005, Angelsky
et al.8 investigated how the correlation structure of biological
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tissue polarization images can be used for cancer diagnostics.
These investigations represent only a brief subset of the nu-
merous and considerable advances in polarization-based bio-
logical measurements made over the past few years.

When describing photon migration in turbid media, com-
mon parameters of interest are the absorption coefficient, �a,
the scattering coefficient, �s, and the scattering phase func-
tion. Although several methods may be used to experimen-
tally measure these parameters, the inverse adding-doubling
integrating sphere technique is a popular approach.9 Other
useful optical parameters can also be experimentally mea-
sured by other approaches, such as by the method reported by
Wang et al.10 In their investigation, a laser beam with an ob-
lique angle of incidence was used to measure the reduced
scattering coefficient of turbid media. Bevilacqua et al.11–13

also reported on local and superficial optical characterization
of biological tissues achieved through spatially resolved dif-
fuse reflectance at small source-detector separations. In these
works, they investigated how extremely sensitive the determi-
nation of the absorption and reduced scattering coefficients
are in relation to the phase function. However, regardless of
the technique, most optical property measurement approaches
only take into account the overall optical properties of the
sample. In this paper, we present a technique to quantify the
individual optical scattering coefficient contributions as a
function of particle size for complex mixtures of polystyrene
1083-3668/2006/11�5�/054031/8/$22.00 © 2006 SPIE
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spheres. This technique exploits information encoded in the
polarization-sensitive Mueller matrix, which is well known to
provide a complete description of the polarization properties
of an optical sample.14–16 In order to predict the scattering
coefficient contribution for an individual particle size in com-
plex suspensions consisting of a mixture of particle sizes, a
partial least-squares �PLS� regression approach is employed.
In addition, a stepwise chain selection algorithm, originally
developed for wavelength selection in spectroscopy, was em-
ployed for spatial selection purposes.17 Through this spatial
selection, an interpretation of the image-based Mueller matri-
ces is provided, which sheds insight on the most relevant
spatial positions and elements of the Mueller matrix. This step
provides information on which elements of the Mueller matrix
and the spatial information within the individual elements
were used in the prediction of the particle-size-dependent
scattering coefficient contributions.

2 Theory
2.1 Mueller Matrix/Stokes Vector Imaging
The polarization state for a given light field can be character-
ized by a Stokes vector, which is a 4�1 vector:18
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where Ex and Ey are the electric field components parallel and
perpendicular to a reference direction of light travel; I is the
total light intensity; Q represents the tendency of the light to
exhibit either horizontal or vertical linear polarization; U rep-
resents the tendency of the light to exhibit either +45° or
−45° linear polarization; and V similarly represents the ten-
dency of the light to exhibit either right or left circular polar-
ization. The angle brackets, �. . .��, represent the time average
over the temporal integration time, which can be assumed to
be much greater than the optical period. Due to the temporal
integration, the time dependence of the electric fields is sup-
pressed. A Mueller matrix is a 4�4 matrix that describes how
an incident Stokes vector, Sinc, is transformed by a given
sample. In essence, the Mueller matrix can be thought of as an
optical fingerprint of a sample. Therefore, if the Mueller ma-
trix, M, is known for a sample, the output or resulting Stokes
vector, Sout, is given by

Sout = MSinc �2�

If the Mueller matrix for a given sample is unknown, all 16
elements can be determined through the acquisition of 16, 36,
or 49 intensity-based measurements corresponding to differ-
ent combinations of input and output polarization
states.14,15,19,24

In our investigation, the polarization dependencies of the
backscattered light from complex turbid media, consisting of
mixtures of polystyrene spheres of different sizes, are inves-
tigated through image-based Mueller matrix polarization mea-
surements. In these measurements, each element of an ac-

quired Mueller matrix is a two-dimensional image rather than
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consisting of a single point. An example of an image-based
Mueller matrix for a turbid phantom is shown in Fig. 1, where
the size of each element is 1.6 cm�1.6 cm and the image
plane is taken at the surface of the sample. It should be noted
that each element of the Mueller matrix corresponds to the
same sample area; however, the observed differences repre-
sent different polarization dependencies as further described
in Sec. 3.1.

2.2 Partial Least Squares
Partial least squares �PLS� is a method that generalizes and
combines features from principal component analysis �PCA�
and multiple regression.17,20 PLS regression is based on the
linear transition from a large number of original descriptors to
a new variable space based on a small number of orthogonal
factors �latent variables�. In other words, factors are mutually
independent �orthogonal� linear combinations of original de-
scriptors. This method proves particularly useful when it is
desired to predict a set of dependent variables Y from a large
set of independent variables X �i.e., predictors�. PLS regres-
sion searches from a set of latent variables that performs si-
multaneous decompositions of X and Y with the constraint
that these latent variables describe the maximum covariance
between X and Y. This is followed by a regression step where
the decomposition of X is used to predict Y. In our investiga-
tion, PLS is used to form a calibration model around a set of
Mueller matrix image-based data, which are then used to pre-
dict the scattering coefficient contribution as a function of
particle size.

2.3 Feature Selection
Although PLS is suitable for full data-set analysis, variable or
feature selection is a commonly used procedure to reduce the
size of data sets as well as to improve the prediction perfor-
mance in calibration and validation. The reasoning behind im-
proved prediction is well-described in literature.17,20–23 and is
due to a variety of factors. One specific reason is that irrel-
evant and/or redundant variables can be identified and re-
moved, therefore improving the signal-to-noise ratio as well
as reducing the overall number of observations to avoid over-
fitting the multivariate models. After variable selection, pre-
dictive abilities are usually enhanced and the models are
much simpler and more robust.

In terms of implementation, optimization techniques such
as simulated annealing �SA� and genetic algorithms �GAs�
have frequently been used.20–23 In this investigation, we
adopted a previously reported algorithm, known as “chain se-
lect,” to optimize our calibration models and locate the most
relevant variables used in prediction.17 This method employs
a stepwise selection approach to improve PLS prediction
through the use of multiple chains of rankings using signal-

to-noise ratio �SNR�, ��̂i / �̂i�, where �̂i is the slope estimated
from ordinary least-square regression of spatial intensities X
at the ith frequency onto Y variables �scattering coefficient�,
and �̂i is the estimated standard deviation at the ith location.
The algorithm begins by computing the spectral SNR fol-
lowed by ranking the variables in decreasing order of SNR.
This is the first ranking chain, from which the variables with
the largest rank is used to generate the “estimated spatial im-

age” as the product of the regression coefficient and Y. The
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residual spatial images, which are calculated as the difference
between the original image and the estimated image, are then
used to calculate a second SNR. The second ranking chain is
obtained by sorting the SNR in descending order. The process
continues until a predetermined number of chains have been
generated. Once the final ranking chain is generated, the
evaluation phase that is common to most stepwise techniques
begins. At each step, a variable is added, a calibration model
is constructed, and the root-mean-square error of cross-
validation �RMSECV� is generated. A spatial position is
added to the selected positions only if it produces a reduction
in RMSECV. In our case, the selected transformed 1-D spatial
position arrays are then transformed back to get the 2-D spa-
tial selections. As presented later, this algorithm provides con-
siderable insight into how scattering type �e.g., Rayleigh ver-
sus Mie� and particle size are encoded into the Mueller
matrix.

3 Materials and Methods
3.1 Experimental Setup
The experimental setup, seen in Fig. 2, is similar to that re-
ported in our previous study.25 An argon ion laser �Melles
Griot, CA� is used as the light source, emitting at a wave-
length of 514 nm with a power of 5.45 mW. The beam is
initially polarized by a horizontal Glan Thompson polarizer
�Melles Griot, CA�. The input polarization state is controlled
electro-optically with no moving parts via two liquid-crystal
voltage-dependent variable retarders �Meadowlark Optics,

Fig. 1 An experimentally measured Mueller matrix for a complex pol
respective scattering coefficient contributions of 0.5, 1.5, 0.25, and 5
CO� with the ability to alter the incident polarization state
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between horizontal �H�, vertical �V�, +45° linear �P�, and
right circular �R�. The polarized beam is then focused by a
lens through a hole in a 45° mounted mirror onto the sample.
The backscattered light from the sample is reflected through
the output pathway consisting of two additional electro-optic
variable retarders and a Glan–Thompson vertical polarizer.
The output pathway is used to analyze the backscattered po-
larization state �e.g., H, V, P, R�. The image is acquired by a
thermoelectric-cooled 512�512 16-bit CCD camera �Apogee
CCD, CA� fitted with a Nikon adjustable zoom lens. The
sample Mueller matrix is calculated by 16 combinations of

e mixture consisting of 0.2, 0.5, 1, and 2 �m-diameter particles with
leading to an overall scattering coefficient of �s=7.25 cm−1.
ystyren
cm−1
Fig. 2 Experimental Mueller matrix backscattering imaging system.
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input and output polarization states. The Mueller matrix re-
construction is automated through a custom LabVIEW® pro-
gram, which controls the CCD camera and the polarization
states through a digital-to-analog �D/A� converter �National
Instruments, Austin, TX�.

3.2 Poly-Disperse Suspensions �Complex Mixtures�
Poly-disperse aqueous polystyrene sphere suspensions are
used as the scattering phantoms, with each containing several
particle sizes �0.2, 0.5, 1, and 2 �m-diameter spheres�. Two
sets of 60 30 ml phantoms with overall scattering coefficients
ranging from 1 to 15 cm−1 were created with each containing
two or more different sizes of polystyrene spheres. The over-
all scattering coefficient, for a given sample, consists of indi-
vidual scattering coefficient contributions for each particle
size, which were chosen through random combinations.
Therefore, each sample consists of multiple particle sizes each
in different concentrations. For example, one of the phantoms
with an overall scattering coefficient of �s=7.25 cm−1 con-
tained 0.2, 0.5, 1, and 2 �m-diameter particles each with an
individual scattering coefficient contribution of 0.5, 1.5, 0.25,
and 5 cm−1, respectively.

3.3 Experimental Protocol
For each set of 60 poly-disperse turbid phantoms, the respec-
tive 16-element Mueller matrices were acquired. The indi-
vidual matrix elements were cropped to 180�180 pixels,
with the center located at the physical laser incidence point.
The approximate size of each image was 1.6 cm�1.6 cm. To
illustrate the type of images acquired, Fig. 1 is an example of
a Mueller matrix image collected for the previously described
�s=7.25 cm−1 complex phantom. Due to the image symme-
try observed in the individual elements, in order to reduce the
data set, only the upper left quadrant of each element is taken
into consideration in the analysis. In addition, all elements are
normalized to the first element, M11, and the other 15 ele-
ments except M11 are combined together into a single 2-D
image array. To apply the PLS technique, the combined 2-D
array for each of the 60 samples is transformed into a 1-D
data array, resulting in 60 image spectra of length 121,500.
All calculations were performed in MATLAB® 6.5 �Math-
works, Natick, MA� and with the PLS_Toolbox �Eigenvector
Technologies, Manson, WA�. For one set of data, a PLS cali-
bration model was determined using a total of 5 latent vari-
ables. This number of latent variables was determined through
a cross-validation analysis in which 5 latent variables mini-
mized the cross-validation error. This approach ensures that
the data set is not “overmodeled” during the calibration pro-
cess. One possible explanation why five latent variables mini-
mizes the cross-validation error is that 1 latent variable is
needed to represent each particle size, 4 total, and an addi-
tional one for the variation in water concentration. The second
set of data was used as an independent data set to perform
validation. Respective standard errors of calibration and vali-
dation for prediction of each particle size were then com-
puted.

In addition to the standard PLS analysis, previously de-
scribed, a second calibration model was also formed after
preprocessing the raw data set to identify the most relevant

spatial positions, which were then used to resample the data to

Journal of Biomedical Optics 054031-
obtain a reduced data set. This was achieved via the “chain-
select” algorithm discussed in Sec. 2.3. The purpose behind
this step was two-fold: �1� to further reduce prediction error
and the overall data size required for prediction, and �2� to
identify the most relevant information present in the Mueller
matrix structure that was used for accurate prediction for each
respective particle size in a complex mixture. As with the
prior analysis, respective standard errors of calibration and
validation for prediction of each particle size were then com-
puted.

4 Results and Discussion
According to the methods described in Sec. 3, a PLS multi-
variate calibration model was formed from one set of Mueller
matrix raw data consisting of a total of 60 phantoms, each
representing a poly-disperse mixture of polystyrene spheres of
different size spheres. Five latent variables were utilized in
the calibration model, which was chosen based on the total
possible number of different size spheres present in a single
sample, four total, plus an additional one for the variation in
water concentration. The use of five latent variables allowed
the capture of high variance in both the transformed image
intensities and the scattering coefficient contributions, 90.15%
and 90.64%, respectively, while avoiding overfitting of the
model to the data. Plots of predicted versus actual scattering
coefficient contribution for every particle size within each of
the 60 samples in calibration using the raw data set �i.e., un-
processed for spatial selection� are presented in Fig. 3. The
standard errors of calibration �SEC�, summarized in the first
column of Table 1, for each particle size ranged from 0.3308
to 0.8582 cm−1. In addition, to further validate the predictive
capability of the computed model, a second set of indepen-
dently collected data was used. In validation, the prediction
results of scattering coefficient contribution for each particle
size are shown in Fig. 4 and summarized in the second col-
umn in Table 1. Although the standard errors of prediction
�SEP� as compared to SECs are larger in each case, in com-
parison to the overall range of scattering coefficient contribu-
tions being predicted, it does not appear that the calibration
model is significantly overfitting the data. As can be partially
seen in Fig. 3, although many data points overlap, the respec-
tive prediction errors for 0.2, 0.5, 1, and 2 �m-diameter par-
ticles for zero concentration are 0.3144, 0.4238, 0.3381, and
0.3730 cm−1, respectively. Based on this, the majority of the
overall error contribution appears to be caused by prediction
errors for the zero-contribution scattering coefficient �i.e., pre-
diction error when a certain type of particle is not present in
the sample�. Therefore, signal and noise due to other particle
sizes cannot completely be distinguished in the model.

As an additional processing step, the raw data used in the
previously described analysis were preprocessed before com-
puting the calibration model with the PLS technique. The pur-
pose of the preprocessing was to determine the most useful
spatial locations in the overall Mueller matrix that provides
accurate prediction of the scattering coefficient contribution
for each respective particle size in the poly-disperse suspen-
sions. To perform the spatial selection preprocessing, the
method described in Secs. 2.3 and 3.3 was employed. After
preprocessing the raw data set, its overall size was reduced

from 60 samples �121,500, in length to 60 samples�2,999,
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in length. Using the resampled data set, we formed a PLS
multivariate calibration model. Again, five latent variables
were utilized in the calibration model. For the spatially se-
lected preprocessed data, the standard errors of calibration
�SEC�, summarized in the third column of Table 1, for each
particle size ranged from 0.1585 to 0.7372 cm−1 and the over-

Fig. 3 Scattering coefficient contribution prediction in calibration fo

Table 1 Scattering Coefficient Contribution SEC and SEP for �a� Full
Data Set and �b� Spatially Selected Data Set �SEC and SEP Units: cm−1�

�a� Full data sets
�raw data� �b� After spatial selection

Particle SEC SEP SEC SEP

0.2 �m 0.3308 0.4514 0.1585 0.3571

0.5 �m 0.8582 0.9635 0.3539 0.7837

1 �m 0.5116 1.5237 0.7372 1.5619

2 �m 0.8041 0.9877 0.5648 0.9138
Journal of Biomedical Optics 054031-
all errors were reduced in comparison to the unprocessed raw
data in all cases, except for the 1 �m-diameter spheres. In
addition, to further validate the predictive capability of the
computed model, the second set of independently collected
data was resampled, choosing the same spatial locations used
during calibration. In validation, the prediction results of scat-
tering coefficient contribution for each particle size are sum-
marized in fourth column of Table 1. As can be seen, similar
standard errors of prediction �SEP� compared to the SEPs
using the raw data set are observed; however, this was
achieved using a considerably smaller subset of the original
data size.

Although the use of spatial selection can considerably re-
duce the overall size of the data set needed for accurate pre-
diction, it can also shed insight about the inherent structure of
the data set and the location of relevant points useful in the
prediction of the respective components �e.g., in this case, the
scattering coefficient contribution for each respective particle
size�. In our experimental approach, the probing light has a
wavelength of 514 nm, or 0.514 �m. For particle sizes sig-

.2 �m, �b� 0.5 �m, �c� 1.0 �m, and �d� 2.0 �m-diameter spheres.
nificantly smaller than the wavelength of light, scattering with
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properties as characterized by the Rayleigh approximation is
more dominant; for particle sizes greater than the wavelength
of light, scattering with properties as characterized by Mie
theory is more dominant. Through the use of the employed
spatial selection method, we can show that the type of scat-
tering involved is directly encoded within specific areas of the
Mueller matrix for each respective particle size. To illustrate
this, the Mueller element M12 was chosen �see Fig. 5�. In the
M12 element, it can be seen for the 0.2 �m particle size, Fig.
5�a�, where Rayleigh scattering was dominant, considerable
locations near the center of the element were used in predic-
tion. In addition, locations to represent or preserve the azi-
muthal variations in the element were also selected. As the
particle size begins to approach the wavelength of light �e.g.,
for the 0.5 �m particle size�, as shown in Fig. 5�b�, several
locations throughout the M12 element were chosen, although
there is less information chosen to preserve the azimuthal
variations. For particles sizes greater than the wavelength of
light �e.g., for the 1 �m and 2 �m particle sizes� where Mie
scattering dominates, less information was chosen near the

Fig. 4 Scattering coefficient contribution prediction in validation fo
center of the element and more information along the +45°
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and 135° angles increasing toward the outer boundary of the
element was chosen. Therefore, this is indicative of how the
scattering type is encoded within the Mueller matrix. Simi-
larly, results were seen to a lesser degree for other specific
elements in the Mueller matrix as well. Other information,
such as particle shape, would be expected to be encoded in the
Mueller matrix in a similar fashion and will be the focus of
future investigations.

5 Conclusion
By the use of backscattered polarized light imaging in turbid
media, we have shown, in part, how variations in image-based
Mueller matrices encode information on the scattering type,
particle size, and particle concentration. Furthermore, meth-
ods such as the PLS technique can be employed in the forma-
tion of mathematical models to quantitatively predict scatter-
ing coefficient contributions as a function of particle size. In
future investigations, further extensions to improve the ro-
bustness of such modeling approaches to handle increasingly

.2 �m, �b� 0.5 �m, �c� 1.0 �m, and �d� 2.0 �m-diameter spheres.
complex media such as those with non-uniform spatial distri-
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butions and differing particle geometries may eventually al-
low such methods to be potentially used as a diagnostic tool
to distinguish between tissue types and abnormalities that
have differences in cellular structures and tissue components.
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