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Abstract. We evaluate the single event tolerance of the x-ray silicon-on-insulator (SOI) pixel
sensor named XRPIX, developed for the future x-ray astronomical satellite FORCE. In this
work, we measure the cross-section of single event upset (SEU) of the shift register on XRPIX
by irradiating heavy ion beams with linear energy transfer (LET) ranging from 0.022 to
68 MeV∕ðmg∕cm2Þ. From the SEU cross-section curve, the saturation cross-section and thresh-
old LET are successfully obtained to be 3.4þ2.9

−0.9 × 10−10 cm2∕bit and 7.3þ1.9
−3.5 MeV∕ðmg∕cm2Þ,

respectively. Using these values, the SEU rate in orbit is estimated to be ≲0.1 event∕year
primarily due to the secondary particles induced by cosmic-ray protons. This SEU rate of the
shift register on XRPIX is negligible in the FORCE orbit.© The Authors. Published by SPIE under a
Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JATIS.8.4.046001]
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1 Introduction

The x-ray silicon-on-insulator (SOI) pixel sensor named XRPIX is a monolithic active pixel
sensor developed as the main imaging spectrometer onboard the FORCE satellite.1–3 The
FORCE satellite is an x-ray astronomical satellite aiming to be launched in the 2030s. It will
achieve a broadband x-ray imaging spectroscopy in an energy range of 1 to 79 keV with a high
angular resolution better than 15 arcsec. XRPIX is one of the main images of the FORCE sat-
ellite and is fabricated with a 0.2 μm fully depleted SOI technology. Utilizing the SOI technol-
ogy, XRPIX is composed of a high-resistivity Si sensor layer and a low-resistivity CMOS circuit
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layer with a SiO2 insulator layer in between as shown in Fig. 1. This structure enables to achieve
a thick depletion layer as thick as a few hundred micrometers and to implement full CMOS
readout circuitry on each pixel. One of the most remarkable characteristics of XRPIX is the
event-driven readout, where only signals from the pixels with x-ray events are readout, by using
the trigger function implemented in each pixel circuit. It realizes high timing resolution better
than ∼10 μs, which enables an extremely low background observation by adopting the anticoin-
cidence technique.

The tolerance to single event effect (SEE) should be considered in the development of the
CMOS integrated circuits for space use. The SEE is a radiation effect caused by a strike of a
single energetic particle. There are two major categories in the SEE: single event upset (SEU)
and single event latch-up (SEL).4 In the SEU, the logical state of a digital circuit is changed by
the free charge generated by the incident particle. It is not destructive but causes the malfunction
of the circuit. On the other hand, the SEL is potentially destructive because it results in a large
current by turning on a parasitic thyristor structure in the CMOS circuit.

Since the CMOS circuit of XRPIX is SOI-CMOS, single event tolerance should be better
than that of bulk CMOS devices.5 In principle, the SEL cannot occur because there is no parasitic
thyristor in the SOI-CMOS. The SEU is also mitigated because the SEU-sensitive volume is
reduced in the SOI-CMOS. However, it is unknown whether the SEU tolerance of XRPIX is
enough for the FORCE satellite. In particular, in the FORCE satellite, the CMOS circuit of the
flight model of XRPIX will contain a lot of shift registers storing operational parameters. If SEU
will frequently occur in such shift registers, it would have a strong impact on the operations of
XRPIX in orbit. Thus, in this work, we measured the SEU cross-section curve of the shift register
on XRPIX for the first time, and quantitatively evaluated its SEU tolerance. The rest of the paper
is organized as follows. In Sec. 2, we describe the details of the heavy-ion irradiation experiment.
In Sec. 3, we present the main results, and estimate the SEU rate in orbit in Sec. 4. We conclude
in Sec. 5.

2 Heavy-Ion Irradiation Experiment

2.1 Test Device: XRPIX8

We irradiated heavy ions to XRPIX at the Heavy Ion Medical Accelerator in Chiba (HIMAC) in
the National Institute of Radiological Sciences. The test device used in this experiment was the
current prototype of the XRPIX series named “XRPIX8.” XRPIX8 has a p-type sensor layer
with a thickness of 300 μm. It has 96 × 96 pixels with a pixel size of 36 × 36 μm2, so that the
sensitive area is ∼3.5 × 3.5 mm2. Adopting the pinned depleted diode (PDD) structure, XRPIX8

Fig. 1 Schematic view of XRPIX.
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has an energy resolution as good as XRPIX6E, which achieved the best spectral performance
among all the XRPIX series.6

In this experiment, we evaluated the single event tolerance of shift registers equipped in the
on-chip peripheral circuits in XRPIX8.7 The shift register is composed of a D-type flip-flop
circuit, and used as a trigger mask for ignoring triggers from noisy rows or columns. By writing
a mask pattern to the shift register, trigger signals from the corresponding row or column are
ignored. Since XRPIX8 has 96 × 96 pixels, there are two 96-bit shift registers for the trigger
masks of rows and columns in XRPIX8.

To monitor the SEU in the shift registers, we periodically read out the values in the shift
registers on XRPIX during the heavy-ion irradiation. For each readout, SEU was judged by com-
paring the values in the shift register with the written values. In addition to the SEU monitoring,
we monitored the current consumption in XRPIX by applying voltages with source meters to
detect SEL if it occurs.

During the heavy-ion irradiation, XRPIX was also irradiated with 22-keV x-rays from a
radioisotope 109Cd as shown in Fig. 2. While the experiments with ions above 100 MeV/u were
performed in the air, the experimental setup was located in a vacuum chamber for 6-MeV/u
beams to avoid energy loss of the beam in the air. The XRPIX sensor was operated under a back-
bias voltage of −25 V, which creates approximately 100 μm of the depletion layer. Thus, both
the heavy ions and x-rays were measured with XRPIX during the experiment.

2.2 Heavy Ion Beam

To evaluate the SEU tolerance, it is necessary to determine the SEU cross-section as a function
of linear energy transfer (LET). Therefore, we adopted a variety of heavy ion beams with the
LET values ranging from 0.022 to 68 MeV∕ðmg∕cm2Þ as listed in Table 1. The LET values were
estimated by using Geant4 simulation.8–10 The total fluence at each LET was 6 × 107 −
9 × 109cm−2, and the flux was 9 × 103 − 2 × 106cm−2 s−1. Since the XRPIX device with

Fig. 2 Schematic picture of the experimental setup of heavy-ion irradiation of XRPIX.

Table 1 Summary of the heavy-ion irradiation.

Ion
Energy
(MeV/u)

LET
[MeV∕ðmg∕cm2Þ]

Fluence
(particles∕cm2)

He 100 0.022 2.96 × 109

H 6 0.051 8.65 × 109

Si 400 0.42 3.52 × 109

Kr 200 4.2 1.88 × 108

Xe 200 9.3 1.85 × 108

Fe 6 25 2.34 × 108

Xe 6 68 6.11 × 107
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PDD structure was established to work up to ∼100 krad ≃ 6.3 × 109 MeV∕mg in our previous
work,11 we regulated the total fluence at each LET not to exceed it.

Figure 3 shows typical time profiles of the heavy-ion beams. 700-μs pulses were irradiated
with a period of 1.65 s, while 1000-ms pulses (depending on ion) with a 3.3-s period. Since x-ray
is also irradiated as described in Sec. 2.1, only x-ray was readout during the beam-off phase,
while both x-ray and heavy-ions were readout during the beam-on phase.

3 Results of the Irradiation Experiment

3.1 Performance of XRPIX During the Heavy-Ion Irradiation

For the demonstration purpose, we show the measured spectra with XRPIX during the heavy-ion
irradiation in Fig. 4. As shown in the figure, even in the beam-on phase, we were able to measure
x-rays from 109Cd above the continuum by the heavy ions. Also, in the beam-off phase, the
spectral performance is almost the same as that before the irradiation. Therefore, as demonstrated
in Fig. 4, XRPIX works in the event-driven readout mode without any major malfunctions even
with the heavy-ion irradiation.

According to the current consumption monitoring of XRPIX during the irradiation, we did
not find any signs of the SEL. Throughout the experiment, the current consumption was kept at
steady values. It is a very plausible result because SEL never occurs in the SOI-CMOS devices in
principle as described in Sec. 1.

Fig. 3 Typical time profiles of the heavy-ion beams.
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Fig. 4 109Cd spectra measured with XRPIX during the heavy-ion irradiation (red/blue) compared
with that before the irradiation (black).
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3.2 SEU Cross-Section Curve

Figure 5 shows the SEU cross-section curve σðLÞ as a function of the LET value L obtained by
the heavy-ion irradiation experiment. In general, the SEU cross-section curve is described as a
Weibull function12

EQ-TARGET;temp:intralink-;e001;116;680σðLÞ ¼
(
σ∞

h
1 − exp

�
L−Lth

W

�i
ðL ≥ LthÞ

0 ðL < LthÞ
; (1)

where σ∞ is the saturation cross-section, Lth is the threshold LET, and W is the curve width.
Thus, by fitting with the Weibull function, we can obtain these characteristic parameters of the
SEU cross-section curve.

Although we successfully detected the SEUs above ∼9.5 MeV∕ðmg∕cm2Þ, no SEU was
detected below ∼4.5 MeV∕ðmg∕cm2Þ, where only upper limits are shown as a triangle in the
figure. Thus, to utilize the data with no SEU detection, we adopted a maximum likelihood
method of the binomial distribution for the fitting. Since the SEU event is a Bernoulli trial where
the stored bit is flipped or not, the number of SEU k follows a binomial distribution

EQ-TARGET;temp:intralink-;e002;116;532PðxÞ ¼
�
n
k

�
pkð1 − pÞn−k; (2)

where p is the probability of SEU and n is the number of incidence particles. Although it can be
approximated to the Poisson distribution in our experiment, we implemented the likelihood
function of the binomial distribution for wide applicability. Thus, we minimized the likelihood
function defined as

EQ-TARGET;temp:intralink-;e003;116;439−2 lnL ¼ −2
�
ln

�
n
k

�
þ k lnpþ ðn − kÞ lnð1 − pÞ

�
; (3)

for the SEU probability p expected in the model, and obtained the best-fit parameters of the
Weibull function. We also estimated the uncertainties of parameters as the intervals where the
difference of −2 lnL from the best-fit was below unity. As the result of fitting, we obtained
the threshold LET of Lth ¼ 7.3þ1.9

−3.5 MeV∕ðmg∕cm2Þ, the saturation cross-section of σ∞ ¼
3.4þ2.9

−0.9 × 10−10 cm2∕bit, and the curve width of W < 35 MeV∕ðmg∕cm2Þ (68% upper limit).
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Fig. 5 SEU cross-section curve of the shift register on XRPIX (black points) and the best-fit
Weibull function (red solid curve). Filled circles indicate the experimental data points with SEU
detection, while triangles indicate 68% upper limits without SEU detection.
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4 Estimation of SEU Rate in Orbit

Utilizing the obtained saturation cross-section and threshold LET, we estimated the SEU rate of
the shift registers in XRPIX in the FORCE orbit. We assumed radiation conditions in the solar
maximum in this section. Since the flight model of XRPIX will have ∼1000 × 1000 pixels, the
total number of bits in the shift registers for the trigger mask will increase to ∼2000. In addition,
to reduce the size of the detector system, the flight model is planned to be equipped with digital
circuitry, which is currently in the part of the readout board. Although the number of bits imple-
mented in the on-chip digital circuitry is not yet decided, it would be <104 bits. Thus, we used
this conservative value as the total number of bits in the shift register to estimate the SEU rate.

We first estimated the SEU rate induced by heavy ions in orbit. According to the Space
Environment Information System (SPENVIS),13 the heavy-ion flux above the threshold LET
[Lth ¼ 7.3þ1.9

−3.5 MeV∕ðmg∕cm2Þ] is ≲2 × 10−9 particles∕cm2∕s in the FORCE orbit. As the
FORCE orbit, we assumed the low earth orbit with an altitude of 550 km and an inclination
of 30 deg.3 By multiplying this flux, the assumed number of bits, and the measured cross-section,
we estimated the SEU rate due to the heavy ions to be as small as ∼10−7 event∕year.

In addition to the SEU by heavy ions, we also considered the SEU effect due to secondary
particles generated by the incident cosmic-ray protons. This effect has a significant contribution
to the SEU in the FORCE orbit. Although the cosmic-ray protons deposit small energies com-
pared with the heavy ions, they can cause nuclear reactions with the device material. This nuclear
reaction generates the secondary particles, and they have large energy deposits on the device.
Thus, we need to estimate the SEU due to the secondary particles generated by the cosmic-ray
protons.

According to the simple formula proposed in Barak et al.,14 the SEU cross-section due to the
proton-induced secondary particles is estimated to be ∼10−15 cm2∕bit at maximum. Since the
flux of geomagnetically trapped protons is 1 × 102 particle∕cm2∕s in the FORCE orbit, the pro-
ton-induced SEU rate is calculated to be ≲0.1 event∕year. The actual SEU rate should be much
smaller than this estimation in the FORCE satellite because XRPIX is planned to be surrounded
by ∼30-mm thick BGO shields. Therefore, the SEU rate of the shift registers on XRPIX is
negligible in the FORCE satellite.

The SEU does not have a significant impact on the operation of XRPIX even if it occurs in
orbit, though it was found to be a very rare event in this work. Since the SEU is not a destructive
event, if it occurs in space, it can be fixed by rewriting parameters to registers. It could cause
problems in celestial observation and satellite operation if the SEU frequently occurs. However,
in the case of low SEU probability as in this work, the effect of the SEU is avoidable by regularly
rewriting the registers. Therefore, we can conclude that the XRPIX has a sufficient SEU toler-
ance for the use onboard the FORCE satellite.

5 Conclusions

We evaluated the SEU tolerance of XRPIX for the first time by irradiating the heavy-ion beams.
In this experiment, we found that XRPIX did not have any major malfunctions during the irra-
diation. Also, we successfully estimated the threshold LET and saturation cross-section from
the experimental results. According to these values, the SEU rate of XRPIX in orbit is as rare
as ≲0.1 event∕year. Therefore, we found that XRPIX has a sufficient SEU tolerance for the use
onboard the FORCE satellite.
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