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Abstract. A graphics processing unit–based parallel multigrid solver for a radiative transfer equation with vacuum
boundary condition or reflection boundary condition is presented for heterogeneous media with complex geometry
based on two-dimensional triangular meshes or three-dimensional tetrahedral meshes. The computational com-
plexity of this parallel solver is linearly proportional to the degrees of freedom in both angular and spatial variables,
while the full multigrid method is utilized to minimize the number of iterations. The overall gain of speed is roughly
30 to 300 fold with respect to our prior multigrid solver, which depends on the underlying regime and the par-
allelization. The numerical validations are presented with the MATLAB codes at https://sites.google.com/site/
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1 Introduction
The accurate modeling of photon migration is a prerequisite for
quantitative optical imaging. The general approach is through
either the Monte Carlo simulation (MC)1 or solving its contin-
uous form, so-called radiative transfer equation (RTE), as an
integro-differential equation.2 In practice, the diffusion approx-
imation (DA) of RTE is often used for its simplicity. However,
the accuracy of DA for modeling light propagation is consider-
ably degraded in nondiffusive media,3 particularly for small
animal imaging. Several groups studied RTE based image
reconstructions, which demonstrated the significant improve-
ment over those based on DA.4–9

Although the numerical methods for solving RTE have been
extensively studied,2,10 the development of an efficient RTE sol-
ver is nontrivial mainly due to its high dimensionality, e.g., three
spatial dimensions plus two angular dimensions for steady-state
or frequency-domain RTE in three-dimensional (3-D). An
advantage pertinent to this continuous form as RTE is that
the solution efficiency can be improved through general techni-
ques for solving numerical partial differential equations.2,10 In
our prior work,11 we used the angular finite element method
and the spatial Discontinuous Galerkin (DG) method to obtain
a second-order scheme,12 which means that the solution accu-
racy improves quadratically with respect to the mesh refinement.
In other words, the same solution accuracy can be met with only
the square root of the number of variables in each dimension that
would be required for a first-order scheme with the linear accu-
racy. In addition, to deal with the slow solution convergence in
the diffusive regime, where the scattering is considerably larger
than the absorption, we use the multigrid method to accelerate
the solution convergence. Despite of the acceleration through

the high-order scheme and the multigrid method, the speed
still needs to be improved in order for this RTE solver to be
routinely used.

Graphics processing unit (GPU) is a highly parallel multi-
threaded, manycore processor.13 It is well-suited to addressing
problems that can be expressed as data-parallel computations. In
addition, GPU costs much less than parallel computers. It has
been employed in various biomedical applications and achieved
ten-fold to hundred-fold gains in speed. In particular, GPU algo-
rithms for solving RTE were recently developed based on the
standard angular discrete ordinates and the source-iteration
approach, respectively for optical imaging14 and in the field
of atmospheric radiative transfer.15 Since our RTE solver is
also highly parallelizable, the parallelization via GPU is attrac-
tive considering its efficiency, cost, and complexity.

In this work, we are going to develop a GPU algorithm to
realize the extra gain in speed based on our multigrid solver.11

Here, the parallelization is considerably different from existing
works,14,15 such as the spatial parallelization, in order to opti-
mize the speed gain with respect to the current multigrid solver.
The major contribution of this work is to use the GPU to accel-
erate the source-iteration steps, while the proposed parallel algo-
rithms do not degrade the performance of the multigrid method
in terms of the number of multigrid iterations. As a result, the
execution time per iteration and the number of iterations will be
presented separately in the result section.

2 Multigrid Solver of RTE
Our approach for solving RTE is based on the full multigrid
method, which consists of “V” multigrid cycles [Fig. 1(a)]
with the purpose of reducing the number of iterations or so-
called relaxation steps, especially in nontransport or diffusive
regimes. The V cycles consist of the relaxation, the defect
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(residual), and the interpolation steps with respect to different
levels of meshes in terms of either angular or spatial variables.
During each V cycle, n1 relaxation steps are performed on the
current level of mesh, respectively, before the computation on
the next coarser level of mesh. Following n1 relaxations, the
residual or defect is computed on the current level and interpo-
lated to the next coarser level of mesh; this is repeated until the
coarsest level of mesh. From the coarsest level, the solution due
to the residual is projected back to the finer level of mesh and
added to the finer solution, and then another n2 relaxation steps
are performed; this is repeated until the finest level of mesh.
Here, n1 ¼ n2 ¼ 3; and the V cycles that do not include the fin-
est level of mesh serve as to provide a good initial guess for the
next finer level. As an example with four levels of meshes shown
in Fig. 1, a V cycle including Levels 1 and 2 is performed to
provide a good initial guess for Level 3; a V cycle including
Levels 1 through 3 is performed to provide a good initial
guess for Level 4; then a few V cycles including Levels 1
through 4 are performed until the stopping criterion is satisfied.
The interested readers may refer to our prior work11 for the effi-
ciency of the multigrid method in reducing the number of
iterations.

The computationally dominant steps occur from the relaxa-
tion and the defect, since the computation time for interpolations
between meshes is much smaller than that for relaxations.
On the other hand, the computation for defect and relaxation
shares the same structure, which can be divided into two steps–
scattering summation and sweeping transport [Fig. 1(b)]. As
illustrated in Fig. 1(b), the order of computational complexity
is OðN2

a · NsÞ for the scattering step and OðNa · NsÞ for the
sweeping step, where Na and Ns are the degrees of freedom
in angle and space, respectively. The details are available in
Ref. 11. Therefore, in the next section, we are going to consider
the parallel algorithms mainly for these two steps.

3 Parallelization of Scattering Summation
When solving RTE, the scattering integral in RTE is discretized
as a summation with respect to angular variables: the scattering
contribution from all angles is summed for each spatial node
along each angular direction. Overall, this scattering summation
is the most computationally dominant step. The goal of the par-
allelization of scattering summation is to reduce the complexity
so that its computational cost is linearly, rather than quadrati-
cally, proportional to the angular degrees of freedom. For exam-
ple, the computational time increases by twice, rather than four
times, when the angular degrees of freedom double.

This goal can be achieved on GPU through the standard GPU
tricks by using shared memory,13 since the scattering summation

is essentially equivalent to the multiplication of the angular scat-
tering weight matrix (1 in Fig. 2) and the photon flux matrix (2
in Fig. 2). That is, we perform the matrix multiplication of block
submatrices with the size BLOCKSIZE × BLOCKSIZE, so that
the memory communication is minimal on the GPU device
[Fig. 2(a)]. When the matrix size exceeds the device memory,
since the spatial degrees of freedom Ns is often much larger than
the angular degrees of freedom Na, it is natural to divide with
respect to spatial degrees of freedom, and then sequentially send
the partial photon flux matrix with the size N 0

s × Na to the GPU
device for parallel computation [Fig. 2(b)]. For convenience and
efficiency, the matrix multiplication functions from CUBLAS
library16 are called in implementation.

Please note that, unlike the sweeping transport, the scattering
summation is completely independent in both angle and space,
and therefore fully parallelizable in theory, which allows the
GPU device to reach its capacity in practice.

4 Parallelization of Sweeping Transport
After the scattering contribution is computed through the scat-
tering summation in each relaxation or defect step, the photon
flux or the solution residual is computed through “sweeping”
over the spatial mesh for each angular direction. The details
are available in Ref. 11.

Although the parallelization of sweeping transport is still
(almost) parallelizable in angular variables (which will be dis-
cussed next), the sweeping order can be a restriction for the par-
allelization of sweeping transport with respect to spatial
variables. That is, along the sweeping characteristics, the trans-
port computation is supposed to be performed in certain orders
on the spatial mesh for transport efficiency. However, this is not
the case when the medium is no longer transport-dominant. That

Fig. 1 Full multigrid method for solving RTE.

Fig. 2 Parallelization of scattering summation.
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is, the transport order along any angular direction is no longer
crucial due to the scattering.

When the sweeping ordering is considered, the spatial mesh
is divided into different causality groups so that the nodes in
each group are independent from the nodes in other groups.
Therefore, the nodal sweeping in groups can be done in parallel
[Fig. 3(a)]. For example, in Fig. 3(a), according to the flow
direction, Triangles 1 to 5 form a causality group, Triangles
6 through 8 form a causality group, and Triangle 9 forms a caus-
ality group. During the sweeping transport, only the nodes
within the same group are dependent. For example, the compu-
tation in the group with Triangles 1 through 5 should go sequen-
tially from Triangle 1 to Triangle 5. Therefore, in parallelization,
independent computations can be carried out simultaneously.
That is the parallelization can be done on the nodes with the
same color, i.e., on Triangle 1, 6, and 9 first, Triangle 2 and 7
next, then Triangle 3 and 8, then Triangle 4, and last Triangle 5.

However, as indicated by Fig. 3(a), the size of parallelizable
groups may vary dramatically, which is not ideal for paralleliza-
tion. This strict compliance has to be compromised in imple-
mentation. That is, instead of strictly following the causality,
we use distance metrics to order the spatial nodes and parallel
the spatial mesh accordingly [Fig. 3(b)], which provides the uni-
form group size for parallelization while conforming to the caus-
ality. As an example shown in Fig. 3(b), according to the flow
direction, the nodes are naturally divided into two groups
according to the distance function: Triangles 1 to 2, 6 to 7 and
9 form a parallelizable group; Triangles 3 to 5 and 8 form a par-
allelizable group. In this way, the efficiency of the parallelization
is improved while the transport ordering is approximately main-
tained. However, since the spatial parallelization groups are dif-
ferent from angle to angle, the GPU computational speed is not
optimal due to this complexity in accessing the memory.

Therefore, we consider the sweeping transport without the
sweeping ordering [Fig. 3(c)]. When the medium is diffusive or
not under the transport regime, as mentioned above, the sweep-
ing ordering is not essential. In this case, the parallelization is
straightforward in space [Fig. 3(c)]. In Fig. 3(c), we simply par-
allel the spatial nodes according to its original ordering. That is
Triangles 1 to 5 form a parallelizable group for all angular direc-
tions, and Triangles 6 to 9 form a parallelizable group for all
angular directions. Unlike in Fig. 3(a) and 3(b), the paralleliza-
tion of spatial nodes is the same for all angular directions in
Fig. 3(c). In this way, the memory access is efficient and the
GPU speed is optimal. However, when the medium is under
the transport regime, the efficiency of the overall multigrid
method could be affected, i.e., the number of multigrid cycles
could increase due to the violation of the transport causality or
the delay of the upwind flux.

Next, we briefly comment on the angular parallelization of
the sweeping transport step, which is fully parallelizable under

the vacuum boundary condition. However, under the reflection
boundary condition, the mismatch of refraction index at the
boundary causes the boundary scattering. That is, the boundary
flux along the sweeping direction is also related to the boundary
flux from other directions. Therefore, the sweeping transport
is no longer independent among angles under the reflection
boundary condition. However, we can still precompute the
boundary scattering contributions in parallel and then fully
parallelize in angle. In this way, although the boundary scatter-
ing lags behind, it does not severely degrade the overall
performance.

Again, when the matrix size exceeds the device memory,
we can sequentially perform the parallelization on GPU with
respect to the angular variables, and even spatial variables if
necessary.

5 Parallelized Multigrid Solver of RTE
The parallelization of the interpolation steps is straightforward
since the interpolation consists of component-wise operations
that are totally independent from each other and therefore
fully parallelizable.

There is a subtle change in algorithm due to the paralleliza-
tion of the relaxation. Previously, the relaxation was equivalent
to the Gauss-Seidel iterative method in both angular and spatial
variables. After the parallelization, the scattering step is sepa-
rated from the transport step, and therefore the relaxation is
equivalent to a mixed iterative method, which is like the Gauss-
Seidel method in spatial variables but like the Jacobi method in
angular variables. Due to this change, the number of multigrid
iterations may increase in the diffusive regime, since the Jacobi
method is not as efficient as the Gauss-Seidel method when sol-
ving elliptic type of differential equations with the multigrid
method. However, the Jacobi method for RTE does allow the
scattering summation to be separately computed from the
sweeping transport, which could offer an order-of-magnitude
gain in speed even on CPU (See Tables 1 through 6).

Overall, with the above parallelized relaxation, defect, and
interpolation steps, the efficiency of the multigrid method is
still roughly maintained so that the number of multigrid itera-
tions stays roughly at the same level despite of some perfor-
mance variations in different regimes.

6 Results
We consider a two-dimensional (2-D) circular domain centered
at the origin with a diameter of 60 mm (millimeters). An iso-
tropic point source is put at (−27 mm, 0) with the modulation
frequency 100 MHz. The Henyey-Greenstein phase function
with the anisotropic factor g ¼ 0.9 is employed as the scattering
kernel. The refraction index of the environment is set to be 1; the
refraction index of the medium is set to be 1 under the vacuum
boundary condition, and 1.33 under the reflection boundary
condition. The homogenous background is assumed with the
absorption coefficient μa and the scattering coefficient μs. Typi-
cal scattering-to-absorption ratios are selected to represent the
transport regime (μa ¼ 0.01 and μs ¼ 0.1; ∼0.6 reduced optical
depths), the intermediate regime (μa ¼ 0.01 and μs ¼ 1; ∼6
reduced optical depths), and the diffusive regime (μa ¼ 0.01
and μs ¼ 10; ∼60 reduced optical depths) in Tables 1 through
3, respectively.

We also consider a 3-D cubic domain centered at (20 mm,
20 mm, 20 mm) with the side length of 40 mm each. The setting
and the parameters in 3-D are the similar to those in 2-D, with an

Fig. 3 Parallelization of sweeping transport.
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isotropic point source at (2 mm, 2 mm, 2 mm). Again, typical
scattering-to-absorption ratios are selected to represent the
transport regime (μa ¼ 0.01 and μs ¼ 0.1; ∼0.6 reduced optical
depths), the intermediate regime (μa ¼ 0.01 and μs ¼ 1; ∼6
reduced optical depths), and the diffusive regime (μa ¼ 0.01
and μs ¼ 10; ∼60 reduced optical depths) in Tables 4 to 6,
respectively.

In the result tables, NaðNsÞ is the angular (spatial) degrees of
the freedom; CPU denotes the prior multigrid RTE solver; CPU
(fast) denotes the fast multigrid RTE solver, with the accelerated
scattering summation via the matrix multiplication of block

submatrices [Fig. 2(a)]; GPU denotes the parallelized multigrid
RTE solver with transport spatial ordering [Fig. 3(b)]; GPU
(fast) denotes the parallelized multigrid RTE solver with natural
spatial ordering [Fig. 3(c)]. The same stopping criterion based
on the residual11 is used to make sure the solutions from various
solvers have the same order of the accuracy.

The above results are based on NVIDIA Tesla C2070
(5.25 GB device memory) on a desktop with Intel Xeon
CPU E5620 2.40 GHz, and the solvers are complied through
x64 complier from Microsoft Visual Studio with single
precision.

Table 1 Performance comparison of RTE solvers in 2-D when μa ¼ 0.01 and μs ¼ 0.1 (transport regime). In the results, the first number is the com-
putational time (in seconds) of a multigrid iteration, and the second is the number of multigrid iterations.

B.C. Vacuum boundary condition Reflection boundary condition

Na 128 256 256 128 256 256

Ns 6144 6144 24,576 6144 6144 24,576

CPU 8.2∕1 45∕1 356∕1 8.2∕1 45∕1 360∕1

CPU (fast) 3.7∕1 12∕1 49∕1 3.7∕2 12∕1 50∕1

GPU 0.33∕2 0.69∕1 2.9∕1 0.33∕2 0.69∕1 2.9∕1

GPU (fast) 0.14∕5 0.30∕4 1.2∕7 0.14∕6 0.30∕5 1.2∕9

Table 2 Performance comparison of RTE solvers in 2-D when μa ¼ 0.01 and μs ¼ 1 (intermediate regime). In the results, the first number is the
computational time (in seconds) of a multigrid iteration, and the second is the number of multigrid iterations.

B.C. Vacuum boundary condition Reflection boundary condition

Na 128 256 256 128 256 256

Ns 6144 6144 24,576 6144 6144 24,576

CPU 8.2∕1 44∕1 358∕1 8.2∕1 45∕2 354∕1

CPU (fast) 3.7∕1 12∕2 49∕1 3.7∕2 12∕2 48∕1

GPU 0.33∕2 0.69∕2 2.9∕2 0.33∕3 0.69∕2 2.9∕2

GPU (fast) 0.14∕2 0.30∕2 1.2∕2 0.14∕2 0.30∕2 1.2∕2

Table 3 Performance comparison of RTE solvers in 2-D when μa ¼ 0.01 and μs ¼ 10 (diffusive regime). In the results, the first number is the com-
putational time (in seconds) of a multigrid iteration, and the second is the number of multigrid iterations.

B.C. Vacuum boundary condition Reflection boundary condition

Na 128 256 256 128 256 256

Ns 6144 6144 24,576 6144 6144 24,576

CPU 8.2∕11 44∕11 344∕11 8.2∕11 44∕11 358∕12

CPU (fast) 3.7∕26 12∕25 50∕26 3.7∕27 12∕26 49∕26

GPU 0.33∕29 0.69∕28 2.9∕28 0.33∕29 0.69∕28 2.9∕28

GPU (fast) 0.14∕29 0.30∕28 1.2∕28 0.14∕30 0.30∕29 1.2∕28
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7 Discussions and Conclusions
In terms of the speed gain for a multigrid iteration, it is clear
from Tables 1 to 6 that the parallelized solvers (GPU and
GPU (fast)) have roughly the linear dependence on the angular
degrees of freedom Na, while the prior multigrid solver (CPU)
has roughly the quadratic dependence on Na. And the

performance of the fast multigrid solver (CPU(fast)) is in
between. As a result, the computational speed for a multigrid
iteration is significantly improved through the parallelization
on GPU. For example, the achieved gain of speed from CPU
to GPU (fast) is 60 to 300 fold in 2-D (Tables 1 to 3) and
80 to 200 fold in 3-D (Tables 4 to 6). This linear dependence

Table 4 Performance comparison of RTE solvers in 3-D when μa ¼ 0.01 and μs ¼ 0.1 (transport regime). In the results, the first number is the com-
putational time (in seconds) of a multigrid iteration, and the second is the number of multigrid iterations.

B.C. Vacuum boundary condition Reflection boundary condition

Na 66 258 258 66 258 258

Ns 49,152 49,152 393,216 49,152 49,152 393,216

CPU 41∕1 602∕1 11673∕1 41∕1 655∕1 11412∕1

CPU (fast) 11∕1 95∕1 784∕1 12∕1 95∕2 790∕1

GPU 0.98∕1 4.6∕1 191∕1a 0.98∕2 4.6∕2 193∕1a

GPU (fast) 0.52∕8 3.0∕7 NA 0.54∕11 2.9∕13 NA

awhenNa ¼ 258 andNs ¼ 393;216, since the required memory exceeds the GPUmemory, there are multiple memory passes between CPU and GPU
and the GPU speed is degraded.

Table 5 Performance comparison of RTE solvers in 3-D when μa ¼ 0.01 and μs ¼ 1. In the results, the first number is the computational time (in
seconds) of a multigrid iteration, and the second is the number of multigrid iterations.

B.C. Vacuum boundary condition Reflection boundary condition

Na 66 258 258 66 258 258

Ns 49,152 49,152 393,216 49,152 49,152 393,216

CPU 41∕3 654∕1 12048∕1 41∕3 658∕2 11698∕2

CPU (fast) 12∕3 94∕2 790∕2 12∕3 95∕3 790∕3

GPU 0.98∕3 4.6∕2 191∕2a 1.0∕4 4.6∕6 195∕3a

GPU (fast) 0.53∕5 3.0∕4 NA 0.54∕7 2.9∕9 NA

awhenNa ¼ 258 andNs ¼ 393;216, since the required memory exceeds the GPUmemory, there are multiple memory passes between CPU and GPU
and the GPU speed is degraded.

Table 6 Performance comparison of RTE solvers in 3-D when μa ¼ 0.01 and μs ¼ 10 (diffusive regime). In the results, the first number is the com-
putational time (in seconds) of a multigrid iteration, and the second is the number of multigrid iterations.

B.C. Vacuum boundary condition Reflection boundary condition

Na 66 258 258 66 258 258

Ns 49,152 49,152 393,216 49,152 49,152 393,216

CPU 41∕10 641∕12 11544∕9 41∕12 595∕15 11930∕11

CPU (fast) 12∕27 93∕27 746∕23 12∕30 92∕32 747∕27

GPU 0.98∕40 4.6∕41 183∕23a 0.99∕45 4.6∕48 191∕27a

GPU (fast) 0.52∕43 3.0∕42 NA 0.53∕49 2.9∕50 NA

awhenNa ¼ 258 andNs ¼ 393; 216, since the required memory exceeds the GPUmemory, there are multiple memory passes between CPU and GPU
and the GPU speed is degraded.
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on Na is crucial, since the computational time can be drastically
reduced when a significant number of angular directions are
required in order to accurately simulate optically thin medium,
the near-source field, the transport region, or strongly forwarded
peaking scattering. This is particularly essential for the 3-D RTE
computation, since the angular space in 3-D has two dimen-
sions, which means a regular refining of the angular meshes
increases Na by four times as comparing with 2-fold increases
for 2-D RTE.

Regarding the number of multigrid iterations, the effect of
the parallelization on the multigrid method varies under different
RTE regimes. In the transport regime (Tables 1 and 4), the vio-
lation of the transport causality causes the increase of the num-
ber of iterations for GPU (fast), and therefore the parallelized
solver GPU with transport ordering [Fig. 3(b)] is recommended.
In both the intermediate regime (Tables 2 and 5) and the diffu-
sive regime (Tables 3 and 6), GPU (fast) is recommended, since
the natural spatial ordering [Fig. 3(c)] is sufficient in the pre-
sence of the strong scattering.

One aspect of our future work will be on the cases where the
problem size exceeds the GPU device memory. As shown in the
given 3-D examples (Na ¼ 258 and Ns ¼ 393; 216), the speed
gain is limited by the multiple passes from the host memory to
the device memory. A possible solution is to consider the multi-
GPU parallelization. On the other hand, the current GPU solver
will allow us to efficiently study a few RTE based inverse pro-
blems,17–20 so that we can assess the potential gain in the ima-
ging accuracy due to RTE. In addition, we will also spend time
to write user documents and develop user-friendly interfaces to
share this solver with the community.

In summary, based on our prior multigrid solver of RTE, we
have developed a parallelized solver of RTE with considerably
improved speed. This parallel solver has the linear computa-
tional complexity with respect to both angular and spatial
degrees of freedom. As a result of the parallelization, the overall
gain of speed is roughly 30 to 300 fold, which depends on the
underlying regime and the parallelization. The solver is for het-
erogeneous media with complex geometry based on 2-D trian-
gular meshes or 3-D tetrahedral meshes. The MATLAB codes
are available at https://sites.google.com/site/rtefastsolver/.
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