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Abstract. Surgical cancer resection requires an accurate
and timely diagnosis of the cancer margins in order to
achieve successful patient remission. Hyperspectral imag-
ing (HSI) has emerged as a useful, noncontact technique
for acquiring spectral and optical properties of tissue. A
convolutional neural network (CNN) classifier is developed
to classify excised, squamous-cell carcinoma, thyroid
cancer, and normal head and neck tissue samples using
HSI. The CNN classification was validated by the manual
annotation of a pathologist specialized in head and neck
cancer. The preliminary results of 50 patients indicate
the potential of HSI and deep learning for automatic tis-
sue-labeling of surgical specimens of head and neck
patients. © The Authors. Published by SPIE under a Creative Commons

Attribution 3.0 Unported License. Distribution or reproduction of this work in

whole or in part requires full attribution of the original publication, including

its DOI. [DOI: 10.1117/1.JBO.22.6.060503]
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1 Introduction
Hyperspectral imaging (HSI) is a noncontact imaging modality
that acquires a two-dimensional image over discrete wave-
lengths, producing a hyperspectral image cube (hypercube).

HSI has recently been promisingly used for biomedical imaging,
despite its origin in geological remote sensing.1

Surgery remains the well-established, standard treatment
for most cancers, including thyroid and oral cancer, which is
the sixth most common cancer worldwide.2 Recurrence rates
for cancer after surgical resection are largely dependent on neg-
ative (cancer-free) surgical margins, along with other factors that
cannot be controlled, such as extremes in patient age and other
patient demographics.3 Surgical cancer resection can be a lengthy
procedure and sometimes involves “free-flap” reconstruction of
the resected area with skin removed from a different part of the
body, commonly the arm or the leg. In extreme cases, cancer of
the thyroid can also become locally invasive requiring removal
of the larynx or adjacent structures.2

Cancer-margin detection in head and neck cancer is essential
for salvaging the valuable normal tissue needed to preserve as
much patient function as possible. During these surgeries, sur-
geons require an accurate and timely diagnosis of malignant
areas that require resection. A rapid and reliable surgical diag-
nostic aid that provides tissue and cancer identification would
prove very efficacious in the surgical theater. Previously, regres-
sion-based machine learning algorithms, such as support vector
machines (SVMs) and k-nearest neighbor (kNN), have been
applied to HSI in attempt solve this problem.1

In this letter, a method for automated classification of normal
and cancerous, head and neck tissue is developed using deep
convolutional neural networks (CNNs). This work demonstrates
that deep learning has the potential to be implemented into a
tissue classifier, fully trainable on a database of hyperspectral
images from tissue specimens that can produce near real-time
tissue labeling for intraoperative cancer detection.

2 Materials and Methods

2.1 Study Design

For this study, we recruited 50 head and neck cancer patients
who were undergoing surgical cancer resection in order to
collect 88 excised tissue samples. We collaborated with the
Emory University Hospital Midtown surgical and pathology
teams to obtain three tissue samples from each patient, i.e., a
sample of the tumor, a normal tissue sample, and a sample at
the tumor–normal interface. After the tissues are resected, the
samples are imaged with HSI in order to obtain the hypercube.

The average patient age was 57. The two origin sites included
for cancer resection were upper aerodigestive tract sites, i.e.,
tongue, larynx, pharynx, mandible, and the thyroid. Of the
50 patients, 29 had squamous-cell carcinoma (SCCa) and 21
had thyroid carcinoma, i.e., papillary thyroid carcinoma and
medullary thyroid carcinoma.

2.2 Hyperspectral Imaging

Hyperspectral images were acquired for all tissues samples from
the 50 cancer patients using a CRI Maestro imaging system
(Perkin Elmer Inc., Waltham, Massachusetts). The imaging sys-
tem is comprised of a Xenon white-light illumination source,
a liquid crystal tunable filter to separate spectral bands, and
a 16-bit charge-coupled device capable of obtaining high-reso-
lution images (1040 × 1392 pixels).4 The images were obtained
over a spectral bandwidth from 450 to 900 nm in 5-nm incre-
ments, producing a hypercube with 91 spectral bands.*Address all correspondence to: Baowei Fei, E-mail: baowei.fei@emory.edu
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2.3 Image Preprocessing

Hyperspectral data normalization was performed in order to
compare different patients’ samples and different cancer types.
Each patient’s hypercube was normalized in order to obtain arbi-
trary units of reflectance by dividing the reflectance values by a
white reference after subtracting the dark current.5 Then, a 3 × 3

median filter was applied to each band within the hypercube.
Next, for each hypercube, all pixel intensities were binned in
a histogram and a gamma distribution was fit to the binning
distribution. A population threshold was determined experimen-
tally to sufficiently remove most glare pixels by visual inspec-
tion, which corresponds to the top 0.05% to 0.2% of the pixel
intensities.5

After normalization and glare removal, pixels were averaged
in 5 × 5, nonoverlapping neighborhoods in order to obtain aver-
age spectra.6 Therefore, each block contains a normalized and
averaged reflectance-based spectral signature that has one gray-
scale intensity value for each of the 91 bands. Figure 1 shows the
average spectral signature for each tissue type, which was con-
structed by averaging all blocks from all tissue samples of the

corresponding tissue class. Next, a spectral patch is constructed
from each block using the 91 reflectance values along with
padding zeros and reformatting the spectral signature into a 10 ×
10 pixel patch.7 As shown in Fig. 2, the spectral patches pro-
duced from all normal and cancer tissue samples are used for
classification.

2.4 Convolutional Neural Network

ACNNwas implemented using TensorFlow to classify the spec-
tral patches as either normal or cancer tissue.8–11 The neural net-
work architecture consisted of six convolutional layers and three
fully connected layers. The number of filters in each convolu-
tional layer and the number of neurons in each fully connected
layer are shown in Fig. 2. The patch size used was 10 × 10, and
the kernel size used for convolutions was 3 × 3. The output of
each convolutional layer is 10 × 10 × N, where N is the number
of filters in the convolutional layer. The final layer, i.e., soft-
max, generates a probability of the pixel belonging to either
class. Neuron weights were initialized to 0.05 with a truncated
normal distribution, and the learning rate is 0.01 with an adap-
tive gradient descent algorithm used for optimization. The CNN
was trained for 25,000 steps, using a batch size of 250 and five
epochs of data.

2.5 Validation

As class labels are required for both training and performance
evaluation, a gold-standard is, therefore, necessary. After image
acquisitions, histological, digitized images were obtained from
the surface cross section of the fixed tissues. This histological
image was used to outline a gold standard by a head-and-neck
specialized pathologist (JVL). Using the gold standard, a binary
mask is made for class labels of each pixel within the normal and
tumor sample.

The CNN classification performance was evaluated using
leave-one-patient-out external-validation to calculate the sensi-
tivity, specificity, and accuracy.6 For example, the CNN was
trained on 49 patients’ normal and cancer tissue data, after
which the normal and cancer tissue data from the 50th patient
was classified using the fully trained CNN. A total of 37 external-
validations were performed using all patients with histologically

Fig. 1 (a) Normalized reflectance curves for the average spectra,
shown with standard deviation, of all 29 SCCa patients. (b) Normal-
ized reflectance curves for the average spectra of all 21 thyroid
patients.

Fig. 2 Flowchart of the data processing and deep learning architecture. The spectral signatures from 5 ×
5 blocks extracted from the hypercube are reformatted into 10 × 10 spectral patches. The CNN trained on
the spectral patches consisted of six convolutional layers (height, width, and filter numbers are shown)
and three fully connected layers (number of neurons in the layer are shown).
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confirmed normal and tumor tissue samples (see Table 1).
Performance was evaluated every 5000 steps, and training was
stopped once the best performance was achieved. The training
time for one external-validation was at an average of 1.5 h and
the testing time was ∼30 s.

To further investigate interpatient variability, the patients
were separated according to their cancer type into two groups,
i.e., SCCa of the upper aerodigestive tract sites and cancer of
the thyroid. The SCCa group had 29 patients from whom 20
external-validations were performed, and the thyroid cancer
group had 21 patients from whom 17 external-validations were
performed, as shown in Table 1.

The cross-validation method of performance evaluation
involves taking patient samples that are known to be of one
class for the CNN training, and then classifies new tissue from
that same patient for validation. This technique could augment
the performance of the classification when a surgeon can pro-
vide a sample from the patient for training. This method

provides the benchmarks for the proposed CNN approach
(see Table 2). The spectral patches from all 50 patients were
randomly divided into two, nonoverlapping groups, i.e., the
training and testing datasets. Seventy-five percent of the spectral
patches were used as the training dataset, and the remaining
25% comprised the testing dataset. The CNN was fully trained
for 20,000 steps using the training dataset, and the performance
was calculated using the testing dataset. The performance of the
classifiers, SVM (Gaussian kernel, manual scale set to 3.5),
kNN (k ¼ 10, squared inverse Euclidean distance), logistic
regression (LR), complex decision tree classifier (DTC: Gini
index with 100 splits), and linear discriminant analysis (LDA:
diagonal convergence),1,12–14 all of which were implemented in
MATLAB, was evaluated.

Fig. 3 (a) Representative HSI-RGB composite and histological images from maxillary sinus SCCa (left)
and thyroid (right) patients. The dotted line indicates the cancer margin. (b) Representative CNN clas-
sification results of a larynx SCCa patient.

Table 1 Results of average CNN performance on patient held-out
external validation, values are % ± SD.

All
patients

SCCa
trained
on SCCa

only

SCCa
trained
on both

Thyroid
trained

on thyroid
only

Thyroid
trained
on both

Sensitivity 81� 19 77� 21 79� 15 86� 23 83� 23

Specificity 78� 20 78� 19 67� 20 93� 9 92� 9

Accuracy 80� 14 77� 16 74� 14 90� 10 88� 11

Table 2 Performance of CNN and other machine learning methods
on the 75%/25% training/testing data cross validation, different
regions from the same patients are used between groups.

Classifier Sensitivity (%) Specificity (%) Accuracy (%)

CNNa 96.8 96.1 96.4

SVM 93.0 91.6 92.3

kNN 91.9 86.9 89.4

LR 81.4 82.2 81.8

DTC 85.8 72.6 79.3

LDA 66.1 68.7 67.4

arepresents the proposed method.
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3 Results
The proposed CNN classifier can identify cancer and normal
tissue with 81% sensitivity, 78% specificity, and 80% accuracy.
See Table 1 for the complete results. A representative pseudo-
color visualization of the results is provided in Fig. 3. The per-
formance of both the SCCa and thyroid groups was decreased
by augmenting the training group with normal and cancer sam-
ples of the other group. The SCCa group performed with 74%
accuracy when trained on tissues from both the aerodigestive
tract and the thyroid but achieved 77% accuracy when trained
on aerodigestive tract tissue only. Likewise, the thyroid cancer
group had 88% accuracy when trained on tissues from both the
aerodigestive tract and the thyroid but performed with 90%
accuracy when trained on thyroid tissue only. The large standard
deviations are created by some patients classified with low accu-
racy and some being classified with near perfect accuracy.

The second method for performance evaluation, which sim-
ulates augmenting the tissue database with known patient
sample data, had 97% sensitivity, 96% specificity, and 96%
accuracy. This cross-validation method should be expected to
have better performance than the external validation method
because it trains and tests on different regions from the same
patient and is mainly used for comparison of different machine
learning techniques. Moreover, we can see that the proposed
CNN classifier outperformed all of the evaluated machine learn-
ing algorithms, and the top scoring results are shown in Table 2.

4 Conclusion
Our experimental results show that the CNN has potential for
use in the automatic labeling of cancer and normal tissue
using hyperspectral images, which could be useful for intraoper-
ative cancer detection. The proposed technique is fast and does
not require any further postprocessing to enhance the results.
Moreover, the 37-fold, leave-one-out external-validation shows
that the classification technique is reliable and can be applied to
new patient images. Further studies will involve incorporating
more patient HSI data, comparing the effect of dimensionality
reduction, and investigating more network structures and neuron
initialization techniques to optimize classification performance
and improve generalizability.
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