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Abstract. Liver cancer has one of the highest rates of human morbidity and mortality. However, in terms of
pathology, liver cancer is traditionally clinically diagnosed based on observation of microscopic images of patho-
logical liver sections. This paper investigates in vitro samples of rat models of bile duct carcinoma and presents
a quantitative analysis method based on microscopic hyperspectral imaging technology to evaluate liver cancers
at different stages. The example-based feature extraction method used in this paper mainly includes two algo-
rithms: a morphological watershed algorithm is applied to find object and segment pathological components of
pathological liver sections at different stages, and a support vector machine algorithm is implemented for liver
tumor classification. Majority/minority analysis is utilized as the postclassification tool to eliminate small plaques
from the preliminary classification results. Then, pseudocolor synthesis in RGB color space is used to produce
the final results. The experimental results show that this method can effectively calculate the percent tumor
areas in liver biopsies at different time points, that is, 3.338%, 11.952%, 15.125%, and 23.375% at 8, 12, 16,
and 20 weeks, respectively. Notably, through tracking analysis, the processed results of 8-week images showed
the possibility for early diagnosis of the liver tumor. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1
.JBO.23.10.106002]
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1 Introduction
According to the latest statistics from the China National Cancer
Center, liver cancer has become the third most fatal cancer. The
incidence of liver cancer gradually increases with age, especially
after age 40, and males outnumber females. Unfortunately, the
5-year survival rate for liver cancer is only ∼10.1%, posing a
severe threat to human health. Generally, bile duct carcinoma
is a common primary liver malignancy, which occurs largely
in patients with a chronic liver disease, such as cirrhosis. The
pathological appearance of liver tumors is abnormal liver
cells arranged on typical trabecular structures, and large liver
tumor lesions usually have hemorrhage and fibrosis. Due to
the complex pathogenesis of liver tumors and difficult-to-
control high-risk factors, liver tumors are challenging to prevent.
At the same time, less-effective screening techniques and lower
early diagnosis techniques cause liver tumors to be generally
late when discovered. Consequently, reducing the incidence,
improving the early diagnosis rate, increasing the survival
rate, and promoting homogenization are the focus of the medical
community and the research field on the prevention and control
of liver tumors.

Modern medical imaging plays a vital role in liver tumor
diagnosis. Chauvie et al.1 validated a fully automated approach
for the liver uptake measurement in whole-body fluorodeoxy-
glucose positron emission tomography/computed tomography
(CT) scans and extracted its average standardized uptake
value. Kim et al.2 described the imaging characteristics of

primary hepatic angiosarcomas on gadoxetate disodium-
enhanced dynamic magnetic resonance imaging and highlighted
features that help distinguish angiosarcomas from hemangiomas
of similar size. In recent years, digital subtraction angiography
(DSA) has been developing, combined with CT techniques for
liver tumor examination. Song et al.3 proposed a hypothetical
anatomic model to identify and classify the broad spectrum
of celiac axis and common hepatic artery variations in the use
of both spiral CT and DSA in a large study population. Most
imaging methods are noninvasive but are limited by the hard-
ware device and software technology in the early detection rate
of liver tumors. Although hepatic arteriography often allows for
more accurate and rapid diagnosis, it is an invasive examination
that is considered for use only when other examinations cannot
be used for accurate evaluation and diagnosis.

Researchers currently tend to analyze histopathology image
of pathological liver sections, which can provide liver cell
morphological characteristics and lesion texture information.
Shimada et al.4 researched macroscopic and microscopic indoc-
yanine green (ICG) fluorescence imaging characteristics of
normal liver and liver tumors using ICG fluorescence method,
confirming that ICG fluorescence can also be used for post-
operative pathological examination of microscopic lesions of
pathologic liver tissue specimens. Liver fibrosis is a common
pathological process of chronic liver tumors. Zhou et al.5 applied
Mueller matrix microscopy to human liver fibrosis at different
stages of hepatic fibrosis to extract affected areas for quantitative
analysis. They also verified the validity of the experimental
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results with the Monte Carlo simulation method. With the con-
tinuous advancement of computer-assisted technology, the
role of liver tissue pathological image classification in clinical
diagnosis has become more and more significant. Ashour
et al.6 extracted features of granuloma stages, namely cellular,
fibrocellular, and fibrotic granulomas along with normal liver
samples and then classified. They proposed a new hybrid com-
bination of statistical features for early prediction and treatment
with empirical mode decomposition. Moraru et al.7 classified
healthy, cellular, fibrocellular, and fibrous liver pathologies
based on the liver state, and gradient vector and gradient
angle co-occurrence matrix approaches were used to identify
abnormal tissue structures. Their experimental results confirmed
that local anisotropy-based texture measurement is more pro-
ductive for microscopic pathological analysis. Recently, colla-
gen proportional area (CPA) extraction in liver biopsy images
has supplied an effective means for the assessment of fibrosis
in liver tissue.8,9 Tsipourasa et al.9 utilized clustering algorithms,
K-means (KM), and fuzzy C-means for liver tissue separation,
and six different classifiers were employed for regional classi-
fication. Tsouros et al.10 proposed a modification of the
K-means clustering algorithm, namely supervised restriction
of centroid movement for image segmentation of liver biopsies.
However, the lack of standardized methods for computer image
analysis for CPA assessment limits the application of CPA in
clinical practice. A lot of researchers have presented and con-
firmed a series of possible liver tumor analysis means via micro-
scopic image, but the two-dimensional (2-D) images generally
only include spatial and texture characteristics. For liver tumor
prediagnosis, the traditional optical microscope image identifi-
cation has limitation to some extent.

Microscopic hyperspectral imaging (MHSI) as a new type of
medical image processing technology opens up a higher-effi-
ciency field for the histopathological diagnosis. Hyperspectral
imaging originates from remote sensing imaging and contains
abundant electromagnetic spectra.11 Even in the same biological
tissue, absorption and reflectance spectra by different structures
and components are diversified. Therefore, hyperspectral imag-
ing can be considered to identify and diagnose pathological
tissue in medical images. Jarman et al.12 built a hyperspectral
microscope to capture focused and intensity corrected images
with wavelength ranging from 450 to 750 nm with ∼10-nm
spectral resolution and submicron spatial resolution. They
showed the presence of different components from a nonabsorb-
ent saliva droplet sample. Neittaanmaki-Perttu et al.13,14 proved
the feasibility of a hyperspectral imaging system (HIS) in the
early detection of field cancerization with a new, noninvasive
method. Furthermore, they showed the potential of HIS in
the detection of the subclinical borders of lentigo maligna
(LM) and lentigo maligna melanoma and confirmed histologi-
cally applications. Hashimoto et al.15 classified HE-stained liver
pathology hyperspectral images based on the bag of features,
and the average classification accuracy of different tissue struc-
tures had improved. Overall, there have been few studies on the
autodetection of cancerous liver tissue at different stages, and
that analyze and quantify the pathological changes with micro-
scopic hyperspectral images for early diagnosis of liver tumors.

A large number of research studies have shown that features
extraction is of great significance for liver tumor classification.
Therefore, this paper introduced a statistical features extraction
of liver tumor using MHSI images of bile duct carcinoma animal
models (rats) at different stages, aiming to explore the feasibility

of early pathological diagnosis of liver tumors. The original
microscopic hyperspectral image needs preprocessing for fur-
ther image analysis. Morphological watershed algorithm
(MWA) is applied to segment grayscale image of liver patho-
logical slice into numerous regions; then support vector machine
(SVM) is utilized as a supervised classification algorithm to
integrate the spatial, textured, and spectral information to iden-
tify the liver tumor from the background based on example
selections. To achieve accurate statistics for the percent tumor
area in liver samples, the majority/minority analysis (MMA)
technique is performed on the classification results. Compared
with the SVM method, the classification accuracy of MWA-
based SVM is higher. Further, pseudocolor synthesis is used
to highlight the form and location of liver tumors in tissue sec-
tions. The results indicate that the percent tumor area in the liver
tissue sections is positively related to the length of the experi-
mental period. Moreover, the analytical results at 8 weeks serve
as a valuable reference for the prediagnosis of liver tumors.

2 Materials and Methods
The spectral measurements of a large number of substances indi-
cate that different objects exhibit different spectral reflectance
and radiation characteristics, which cause the wavelength
width of the absorption peaks and reflection peaks to be ∼5 to
50 nm. Its physical connotation is the lattice vibrations of differ-
ent molecules, atoms, and ions, which cause spectral emission
and absorption of different wavelengths, thus different spectral
characteristics are produced, so the spectral characteristics can
be used to analyze and identify the tissue components.16

Medical pathological images are commonly treated with stains.
Although the stains have an influence on the spectral character-
istics of biological tissues, the spectral characteristics of differ-
ent components may also differ after staining,17 which has a
negligible interference on the feature extraction to a certain
extent. In our work, the liver tumor feature extraction and stat-
istical analysis method proposed can be summarized with a
flowchart shown in Fig. 1. The details are elucidated in the
following sections.

2.1 Hyperspectral Images Acquisition

Hyperspectral imaging combines imaging technology with
spectroscopy to detect 2-D spatial and one-dimensional (1-D)
spectral information of a target and obtain continuous and
narrowband image data with high spectral resolution. In this
paper, microscopic hyperspectral images of pathological liver
sections were acquired through an acousto-optic tunable filter
(AOTF)-based molecular hyperspectral imaging platform. The
system has six parts: a microscope (Nikon 80i, Nikon Corp.),
a radiofrequency driver [specific pathogen free (SPF) model
AOTF controller, VFI-138.5-93-SPS-A-C2, Brimrose Corp.],
an AOTF adapter (CVA200-0.55-1.0-L, Brimrose Corp.),
a 1/1.8-in. high-density cooled charge-coupled device (CCD)
camera (DS-2MBWc, Nikon, Japan), a data collection and con-
trol module (Camera Control Unit DS-U2, Nikon Corp.), and
personal computer software and hardware.11,18,19 The light
source integrated with the microscope is a 120-W halogen
lamp (Epi-illumination, Eclipse 80i, Nikon Corp.), which is
a crucial part that provides illumination for the entire imaging
system. To test the detection performance of the system at differ-
ent wavelengths, a blank slide with no samples is placed on the
microscopy stage. The microscopy light source is turned on and
microscopic hyperspectral image data are captured. Then, the
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spectra of different pixels are extracted from the blank
MHSI image data, and the averaged spectrum is calculated
(as shown in Fig. 2), which can be used to represent for the over-
all spectral response of the system. The ordinate of Fig. 2 is the
gray value, that is, the measured value (2 bytes) of the system
detector at different wavelengths. The spectral range of the hal-
ogen lamp is relatively wide, which is conducive to the detection
of each wavelength of hyperspectral imaging at 550 to 1000 nm.
The AOTF adapter with a 10-mm × 10-mm aperture is one
of the core components, providing a narrow bandwidth. The
reflected or transmitted light acts as a carrier for the spatial
and spectral information after interacting with the pathological
tissues of the live, captured, filtered by the AOTF adapter and
imaged on the CCD detector. Computer software and hardware
are used to control the data acquisition of the MHSI system,

process and analyze the datasets, and provide storage space
for the hyperspectral images.

The real spatial resolution of the MHSI system depends on
the pixel size of the CCD detector and the optical modulation
transfer function of the system.18 To evaluate the practical spatial
resolution of the system, a microscope graticule (C1, Shanghai
Jinnshine Photonics Technology Co., Ltd.) was used as a stan-
dard sample and observed by the MHSI system. The graticule is
a 1-mm scale divided into 100 divisions, where each small divi-
sion is 0.01 mm. The Nikon CCD is a monochrome camera that
features a 2 megapixel detection array (1600 × 1200 pixels),
high sensitivity with pixel size of 4.4 × 4.4 μm, and high quan-
tum efficiency. According to the graticule images captured by
the MHSI system, the spatial resolution of the system is
<1 μm, which is suitable for pathological analysis. Figure 3
shows a typical hyperspectral image of a liver tissue section
used in this study. The image is rendered as an n-dimensional
data cube (a), containing 60 wavebands of spectral information.
Each waveband of the hyperspectral image consists of
1280 × 1024 pixels × 12 bits∕pixel, the wavelength range (b)
is from 550 to 1000 nm, and the spectral resolution is 2 to
6 nm (2 nm at 543 nm; 6 nm at 792 nm). Once acquired,
the dataset is stored in the band sequential file format.

2.2 Image Preprocessing

The original MHSI images cannot be directly used for image
segmentation due to insufficient accuracy. Hence, two main
image preprocessing procedures, spectral domain normalization
and spatial domain enhancement need to be performed on the
original images.

Affected by the transmission process of the microscope light
source and the degree of liver pathological section cleanliness,

Fig. 2 The overall spectral response of the system (including the
factor of the halogen lamp).

Fig. 1 The flowchart of the proposed method.
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the original image embodies artifacts from the data and abnor-
mal noise points. Spectral-domain normalization achieves the
spectral response calibration to obtain the relative (or percent)
transmittance instead of the absolute intensity data for further
data analysis, and this process eliminates image artifacts and
some noises. When collecting liver tissue section images treated
with stains, a blank reference image corresponding to the same
glass slide is also collected, and then spectral math tool is uti-
lized to the two images. This process is defined as the following
equation:

EQ-TARGET;temp:intralink-;e001;63;384

Soutputn ¼ floatðSsample
n Þ∕floatðSblankn Þ

n from 550 to 1000 ðnmÞ; (1)

where n is the n’th wavelength of the hyperspectral image.
Ssample
n and Sblankn represent the value of spectrum before calibra-

tion, respectively, and float expresses data-type conversion func-
tions. Soutputn is the spectral value of the output image in the n’th
wavelength after normalization. Figure 3(b) shows the result of
spectral-domain normalization.

Hyperspectral images of the pathological liver section
include impulse noise, hardware equipment such as a CCD
detector, and software operation such as decoding process
will produce lots of salt and pepper noise, which is common
in digital images.20 The composition of the pathological liver
tissue is complicated, and the black-and-white noise points in
hyperspectral images interfere with image processing. Median
filtering is an effective way of spatial-domain enhancement to
remove the isolated noise and further improve the visual effect.
The math equation of the median filter can be given as follows:

EQ-TARGET;temp:intralink-;e002;63;157yi;j ¼ MedAfxi;jg; (2)

where A is the convolution kernel size, xi;j, for ði; jÞ ∈ I ≡
f1; : : : ;Mg × f1; : : : ; Ng, is the gray level of a true M × N
image x at the pixel location ði; jÞ, and yi;j is the output matrix.
The research on median filtering has been quite mature. In this
step, we want to improve the image visual quality under the

premise of retaining the liver tumor pixels to the maximum
extent. The parameter r is defined as the noise level,21 after
spectral domain normalization, r of the image is much <25%;
therefore, the filter window size is set to 3 × 3.

2.3 Spatial Analysis: Grayscale Image
Segmentation

The universal hyperspectral image analysis methods use its
abundant spectral information for image segmentation but
lack information about the spatial structure of the image. For
the hyperspectral images of pathological liver sections, tumor
lesions cannot be differentiated easily by the human eyes, par-
ticularly in the 8-week images, it is arduous to distinguish the
lesion location directly. Spatial information needs to be inte-
grated into the image processing for the purpose of improving
image segmentation performance. This paper uses a morpho-
logical watershed segmentation algorithm that extends liver tis-
sue hyperspectral images to define information about the spatial
structure. The standard watershed algorithm was proposed by
Vincent and Soille at PAMI in 1991,22 which has also been
widely using in hyperspectral image segmentation.23–25 The
watershed algorithm addresses the spatial information of 2-D
images, and it does the same processing for each wavelength
of hyperspectral images. Figure 4 is a representation of morpho-
logical watershed about the hyperspectral image in one wave-
length presented by Tarabalka et al. The gray level of each
pixel in the image represents the elevation of the point. Each
local minimum value and its affected area is called a catchment
basin, whereas the boundary of the catchment basins forms
a watershed.

The MWA plays a prominent part in the gradient threshold
segmentation of hyperspectral grayscale images of liver pathol-
ogy slices. Several related auxiliary parameters are set as
follows:

(i) An intensity-based algorithm is suitable for the segmen-
tation of small gradient changes, for the probability of

Fig. 3 Liver biopsy MHSI data cube. (a) The data cube model and (b) the spectral curve in the range of
550 to 1000 nm.
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over-segmentation is smaller, with no need for merging
algorithms, the segmentation can achieve ideal results.

(ii) In view of the complexity of liver tissue grayscale
images, the segmentation threshold is located at 5%
in this exam. The range of the segmentation threshold
is between 0 and 100. The larger the scale is, the less
number of areas the image segmentation will produce.

(iii) The texture kernel size is defined as 11. In virtue of
a larger size fits liver pathological images that have
more extensive data area and less texture difference.
The range of this parameter is 3 to 19. We have chosen
the mean of the maximum and minimum values after
repeated experiments.

2.4 Spectral Analysis: Liver Tumor Identification

The quality of image segmentation determines the accuracy of
the classification effect to a certain extent. A large number of
repeated experiments manifested that the segmentation algo-
rithm mentioned above selected the desired segmentation
threshold and can segment the edge features of the liver
tissue grayscale as well as possible. Currently, SVM is one
of the most popular classification methods in hyperspectral
images.26,27 SVM can be defined as a linear classifier with
the most substantial interval in feature space, and the learning
goal of the linear classifier is to find a hyperplane in n-dimen-
sional data space.28 The intuitive distance from the point to the
hyperplane is expressed as a geometrical margin. However,
most of the complex data are not linearly separable, for the
nonlinear case, the processing method is to select a kernel
function and solve the problem of linear inseparability in
the original space by mapping the data to the high-dimensional
space. In the spectral analysis of liver tumor classification, the
Gaussian kernel function is chosen as the SVM kernel, which
is an optimal radial basis function because of its excellent
high-dimensional mapping capability. Its basic mathematical
equation is

EQ-TARGET;temp:intralink-;e003;63;159Kðx − xcÞ ¼ exp

�
−
kx − xck2

2σ2

�
; (3)

where x is a feature and xc is a landmark, σ2. is the parameter of
the Gaussian kernel function to adjust the speed of the descent,
in this step σ2 takes a value of 1. The Gaussian kernel function
measures the similarity by measuring the distance between x

and xc (the closer it shows the more similar and the similarity is
closer to 1, the farther it shows the less similar and the sim-
ilarity is closer to 0). In the experiments, the empirical
value 1 is used to get better results. This process maps out
new features Kðx − xcÞ.

To classify the liver tumors more accurately, the example-
based SVM method was adopted for image classification,
and there are some operations that need to be executed.

(i) Defining training samples: We have sampled and cre-
ated the spectral libraries of liver tumors and normal tis-
sues by selecting regions of interest under the guidance
of pathologists.29 Using the segmentation results
obtained by the MWA, we selected a subset of liver
tumor and normal tissue region as classified reference
examples.

(ii) Selecting sample properties: Different attribute selec-
tions are beneficial to train the classification examples.
In the experiment, spectral mean (average grayscale
value at selected wavelength), spectral maximum and
minimum (maximum and minimum grayscale values
at selected wavelength), and spectral standard deviation
(standard deviation of grayscale value at selected wave-
length) for each wavelength are calculated, and all
wavelengths are combined in the SVM classification
process. Another attribute is the texture. The convolu-
tion operation is performed using the texture kernel
size set in the watershed segmentation algorithm. The
value of the center pixel of the window is replaced
with the acquired attribute value, and then the attribute
value with the same tag value in the image segmentation
result is averaged.

2.5 Postclassification and Evaluation

The application of supervised classification methods will inevi-
tably produce some very small-area patches, which are usually
similar to tumor spectrum but nonpathological components in
liver tissue. Preliminary classification results by MWA-based
SVM algorithm are kept for further classification processing,
namely employing MMA tools to reject or reclassify the
small plaques. The majority analysis defines a transform kernel
size using a convolution filtering measure to replace the central
pixel class with the dominant pixel class (the largest number of
pixels) in the transform kernel, and it is suitable for postclassi-
fication of liver hyperspectral images. In this section, the trans-
form kernel size is set as 9 × 9, and the center pixel weight is
controlled at 1 to improve the accuracy of small plaque removal
in liver tissue images, and the processed images are the final
classification results. Synchronously, we only used the SVM
algorithm to do the tumor recognition. In the course of the
experiment, the pathologist provided us with the standard clas-
sification images, and we made a comparative analysis of the
three results.

To evaluate the accuracy of the proposed method, two indices
by means of the confusion matrix are used to evaluate and com-
pare the classification results: overall accuracy (OA) and Kappa
coefficient. The confusion matrix30 is used to compare the clas-
sification result with the standard image, by comparing the
position and classification of each original pixel with the corre-
sponding position and classification in the classification image.
In this paper, the OA is defined as follows:

Fig. 4 Morphological watershed representation in one wavelength.
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EQ-TARGET;temp:intralink-;e004;63;752

Overall accuracy

¼
P

True PositiveðTPÞ þP
True NegativeðTNÞP

Total Pixels
; (4)

where TP represents a correctly classified liver tumor pixels,
and TN represents a correctly classified normal tissue pixel.
Total pixels are provided by the standard classification image.
The OA only considers the number of pixels correctly classi-
fied in the diagonal direction, whereas the Kappa coefficient
considers various missing and misleading pixels outside the
diagonal. This index can calculate overall consistency and
classification consistency. The kappa coefficient is computed
as follows:

EQ-TARGET;temp:intralink-;e005;63;601K ¼ N
P

r
i¼1 pii −

P
r
i¼1ðpiþ � pþiÞ

N2 −
P

r
i¼1ðpiþ � pþiÞ

; (5)

where N is the total pixels of the standard image, r is the num-
ber of rows for the confusion matrix,

P
r
i¼1 pii is the sum of the

diagonal probabilities, and
P

r
i¼1ðpiþ � pþiÞ is the sum of the

products of the K marginal probabilities.31 The OA combined
with Kappa coefficient is more accurate for the classifier evalu-
ation. We obtained two sets of data: SVM classification results
compared to standard classification images and MWA-based
SVM classification results compared with standard classifica-
tion images. The results are discussed in the following
sections.

2.6 Statistical Analysis and Pseudocolor Synthesis

The liver pathologic section images produced via MHSI are
processed by the above segmentation and classification algo-
rithms. Next, the percentage of pixels containing tumor tissue
from whole images is calculated according to the final classifi-
cation results. The statistical data at the four different time points
are used for quantitative analysis of liver tumors.

The resolution of human eyes for color images is much
higher than that of gray-scale images.32 Sammouda et al.33

have proven that color images in the RGB color space are
ideal compared with HSV and HLS. Pseudocolor synthesis as
a valid image enhancement method can highlight the morphol-
ogy and distribution of a specific target. The purpose of this part
is to enhance the information of pathological liver components,

and the final effect of wavelength combination is to highlight the
liver tumor from the image information. The size of single-
waveband information is not the dominant factor in determining
the composition of the wavelength, and the high contrast
between the liver tumor information and the normal area
information is the focus of the way. Therefore, a pseudocolor
synthesis method based on wavelength combination will act
on the classification results, and waveband combination coeffi-
cient, RGB synthesis principle, and visual sensory judgment
are adapted to select and verify the wavelength combination
scheme.

For a sample image, the RGB three-composition has
a strong correlation. In the experiment, the mentioned above
classification result saved in the gray-scale format is selected
as one component of RGB pseudocolor image synthesis; the
remaining two components need to be selected by virtue of
the superior spectral characteristics of the hyperspectral
image. Determine the best wavelength combination based
on the amount of information, namely, the maximum differ-
ence in standard deviation and the minimum sum of correlation
coefficients between the combined wavebands. Take one of the
experimental images for 20 weeks as an example. Figure 5(a)
shows the standard deviation of a liver pathological micro-
scopic hyperspectral image. The vertical axis illustrates the
continuum removed value, where the actual spectral reflec-
tance is used to remove the reflectance value of the correspond-
ing wavelength on the envelope. It can eminently stress the
absorption and reflection properties of the spectral curve, nor-
malize them to consistent spectral values, and extract spectral
features from these values. The process suppresses noise, and
is useful for displaying characteristic values of the spectral
curve. The peak and valley of the standard deviation appear
approximately 700 and 900 nm, respectively. The distribution
of correlation coefficients in the range of 0 to 1 for the 60
wavebands (wavelengths from 550 to 1000 nm) is shown in
Fig. 5(b), and the first row and column of the chart are arranged
in the order of wavelengths, respectively. The shaded area,
whose initial wavelength is approximately at 770 nm (the
30th waveband), indicates that the waveband correlation coef-
ficient is not >0.5 (ignore the waveband autocorrelation coef-
ficient). This section combines the above two parameters and
chooses the appropriate wavelength combination for image
pseudocolor synthesis and for achieving the best visual
contrast.

Fig. 5 Standard deviation and correlation coefficient distributions. (a) Standard deviation based on
continuum removed value of liver pathological MHSI image and (b) correlation coefficient distribution
of wavelength.
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3 Experiments and Results

3.1 Experimental Data and Preprocessing

In this work, 6-month-old SD (Sprague Dawley) male rats were
purchased from Shanghai SLACCAS Experimental Animal Co.,
Ltd. [Animal Production License Number: SCXK (Shanghai)
2012-0002, Use License: SYXK (Shanghai) 2012-0002], reared
in Tongji University affiliated Oriental Hospital Experimental
Animal Center. Thioacetamide (TAA) was purchased in
Changzhou Hangyu Pharmaceutical Technology Development
Co., Ltd. (CAS No.27366-72-9). To establish a TAA-induced
bile duct carcinoma rat model, 40 SD male rats in the experi-
mental group were selected, daily drinking water containing
TAA concentration of 300 mg∕L, reared in an SPF animal
house. Respectively, in feeding 8th, 12th, 16th, and 20th week,
10 rats were euthanized, the livers were harvested by surgery
and paraffin-embedded, fixed, and stained with H&E (hema-
toxylin-eosin staining) to make pathological sections.
Synchronously, four rats in the control group were selected
to drink purified water every day and kept in the same animal
house. At each stage of feeding, one was euthanized and com-
pared with the experimental group slices images. Each rat can
offer two liver hyperspectral images, and in our study, one of
them was randomly selected for tumor analysis. The pathologi-
cal liver sections were provided by pathologists (Department of
Oncology, Longhua Hospital Affiliated to Shanghai University
of Traditional Chinese Medicine) collaborating with our
laboratory.

We utilize the MHSI systems to capture experimental images
in two different formats. One is true color images captured by an
ordinary optical microscope that is doubled in magnification.
The liver tissue slices are rendered as purple-red under the action
of HE staining. This dataset will be compared with the results of
pseudocolor synthesis after image classification. The other is
hyperspectral grayscale images with wavelengths from 550 to
1000 nm, which is stored in 60 wavebands with 2- to 6-nm spec-
tral resolutions. To acquire and determine valuable liver tumor
statistics, the liver biopsy experimental images were collected
every 4 from 8 weeks until 20 weeks.

The quality of liver tissue hyperspectral grayscale images has
been significantly improved after preprocessing by spectral-
domain normalization and spatial-domain enhancement.
Adopting a standard rat image [Figs. 6(a)–6(c)] and four exper-
imental images at different stages [Figs. 6(d)–6(o)] as examples,
the first column of Fig. 6 is the original image acquired. There
are impurities such as salt and pepper noise and data artifacts in
the image due to MHSI systematic errors, from which it is still
impossible to extract useful information for analysis. The sec-
ond column is the hyperspectral grayscale images at the 770 nm
(The image contrast and visual effects are ideal at this wave-
length.) after preprocessing. The gray value gradient of
Fig. 6(b) in normal rat image and (e) in the 8-week image
has been initially processed, while they are ambiguous for iden-
tifying pathological liver tissue and normal components directly.
Whereas the tumor structure, the black region with lower gray
value, can be pointed out by the judgment of the gray gradient in
images (h), (k), and (n), which are corresponding to the liver
pathological sections in 12th, 16th, and 20th week. There are
no tumor components in normal rat image, Fig. 6(c) shows a
spectral curve of normal liver tissue. Figures 6(f), 6(i), 6(l),
and 6(o) are the spectral curves for all wavelengths at two sam-
ple points in the left hyperspectral grayscale images, in which

the green spectrum expresses pathological liver tissues and the
yellow spectrum represents nonpathological areas; It can be
observed that for the normal tissue, the valley of the spectral
curves at each stage is ∼0.8. However, the spectral characteris-
tics of the tumor components and normal tissue regions differ
significantly in the hyperspectral images over a more extended
period of time, and as the time period increases, the gap between
the two curves gradually widens in the range of 600 to 800 nm.
The spectrum within this wavelength range is most conducive to
experimental research. However, in the early (8 weeks) exper-
imental images, the tissue of the suspected cancerous or the ini-
tial lesion is relatively similar to the nonpathological component
in the reflection and absorption of electromagnetic waves, and it
can be observed from Fig. 6(f) that they are very close in spectral
profile, with a maximum difference of <0.1 at 700 nm.

Spectral curves in different positions of liver tissue indicate
that hyperspectral images can indeed be advantageous in the
pathological diagnosis of tumors. The purpose of this study
is further to take full use of the superior spectral properties
of the hyperspectral image, to extract tumors from the early
pathological sections of liver tissue, to explore the possibility
of liver tumors early diagnosis, and to provide a potential
method for pathological diagnosis.

3.2 Segmentation and Classification Results

The MWA regards a grayscale image as an elevation image, and
the gradient change in the grayscale is the topographic relief.
When the segmentation threshold is too high, the segmentation
results of the liver pathological hyperspectral image are not
accurate enough to divide the different components of the
image. As the watershed segmentation algorithm is based on
the spatial information of the image, the processed result is
still a full wavelength (550 to 1000 nm) hyperspectral image,
only the grayscale image in each wavelength is distinguished
into a number of small regions with locally identical label val-
ues. Taking a 20-week experimental image as an example, as
shown in sample Fig. 7, (a) is the preprocessed hyperspectral
grayscale image of liver tissue at 770 nm and (b) is the repre-
sentative MWA segmentation result. An enlarged view of
hepatic fibrosis is shown in Figs. 7(e)–7(h) corresponding to
a square area in (a). Liver tumors are reflected in dark colors
with lower gray values, whereas other areas are grayish
[Fig. 7(f)].

The SVM algorithm is employed as a supervised learning
classifier to recognize and classify the segmentation results.
We applied spectral library information and determined spectral
properties to define training examples, a portion of liver tumor
and nonpathological pixels are picked at different locations in
the segmentation result severally. The parameters of all wave-
lengths are used for testing the examples; the classification
results export one-wavelength image as delineated in Fig. 7(c),
and green and yellow point out the liver tumors and normal tis-
sues, respectively. However, there are some misclassified small
plaques in the region of nonpathological tissue as marked out in
the red ellipses in Fig. 7(g), these plaques were confirmed by
pathologists. The majority analysis tool eliminates small pla-
ques and preserves liver tumor compositions availability as
Fig. 7(h) shows. Combined with the processed results of
MWA-based SVM, the eventual classification results reflect
the tumor status of the pathological liver sections relatively
accurate.
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Fig. 6 Single-band images at 770 nm and spectra. (a) Original liver hyperspectral images of a normal rat;
(d), (g), (j), and (m) original hyperspectral images of tumor-bearing rats at four experimental stages;
(b), (e), (h), (k), and (n) preprocessed single-band images corresponding to the first column; (c) spectral
curve corresponding to the yellow point in (b); (f), (i), (l), and (o) spectral curves of the sample points
corresponding to preprocessed images. The green area represents the pathological component, and
the yellow area represents the nonpathological component.
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Using the above algorithms to process the experimental
images of liver tumor samples in normal rat and at four different
stages, the classification results [Figs. 8(f), 8(k), and 8(p)] of
normal rat image in control group were monochrome (black),
meaning that no pathological components were identified; the
processed results in the experimental group are obtained as
shown in Figs. 8(g)–8(t). For comparison, the standard reference
images of the liver tumor provided by the pathologist are located
in the second row of Figs. 8(f)–8(j). In addition, the third row of
Figs. 8(k)–8(o) lists the processed results only using the SVM
algorithm. Assessment criteria for liver tumor changes are given
by pathologists.34 In the 8-week hyperspectral image (b), it is
difficult for the human eye to identify obvious abnormalities.
The gray gradient is various, and the dark pixels are extremely
dispersed, which is consistent with the early liver pathological
condition. The classification results (g) performed by patholo-
gists and the results (l) and (q) obtained by our method show that
the rats’ livers had undergone minor lesions at 8 weeks. In the
12-week images (h), (m), and (r), a large number of hepatocytes
in cancerous lesions are accumulated, and the distribution is still
relatively disordered. The abnormal hyperplasia of connective
tissue in the liver causes liver fibrosis to appear initially.
When the liver tissue lesions develop to 16 weeks (d), (i),
(n), and (s), a large number of fibroplasias [Fig. 10(k)] and
some bile duct carcinomas have developed, the fibrous structure
tends to be complete; the boundaries of the segmented hepatic
lobule are particularly clear. Severe hepatic fibrosis develops
into cirrhosis or malignant neoplasms, resulting in the appear-
ance of large necrotic tissue, just as the 20-week images (e), (j),
(o), and (t). Comparing the three results, it can be seen that the
approach proposed in this paper is closest to the standard refer-
ence image.

To assess the accuracy of the classification results, we uti-
lized the confusion matrix to calculate the OA and Kappa

coefficient and obtained the data shown in Table 1. The calcu-
lated Kappa coefficients often fall between 0 and 1 and can be
divided into five groups to indicate the consistency of the rela-
tionship: slight (0.0 to 0.20), fair (0.21 to 0.40), moderate
(0.41 to 0.60), substantial (0.61 to 0.80), and almost perfect
(0.81 to 1). Table 1 shows that the OA of the SVM algorithm
classification reaches >80%, but the kappa coefficient is gener-
ally <0.6, especially for the 8th-week image, the OA is almost
equal to our result, yet the kappa coefficient is only 0.2996, indi-
cating that the classification consistency is weak. The OA of our
method is 92.38%, 95.10%, 95.40%, and 95.54%, respectively,
and the kappa coefficients are >0.8, corresponding to 8th, 12th,
16th, and 20th week. In the middle–later stages, our processing
can extract liver tumor characteristics relatively accurately and
prepare for classification statistics and pseudocolor synthesis.
The identification results of liver pathology sections at each
time point manifest that these operations are likely to contribute
a specific reference value for the early diagnosis of liver tumors.

3.3 Liver Tumor Statistics and Pseudocolor
Synthesis

In this section, the percent tumor area in liver samples from the
classification results is quantified and statistically analyzed
based on the number of classified pixels. At the same time,
composite pseudocolor images are generated based on the wave-
length combination. The statistical results show that the percent
tumor area overall follows a significant pattern: as the time
period increases, the pathological morphology of the liver tissue
gradually changes, and the percent tumor area expands. Table 2
shows the statistical results of the samples in this work, and 10
experimental samples and 1 control sample at each time point
are used for analysis.

Fig. 7 An example of the processed results. (a) Preprocessed single-band image, (b) MWA segmenta-
tion image, (c) MWA-based SVM classification image, (d) postclassification image, (e), (f), (g), and (h) an
enlarged view corresponding to the square areas in (a–d). The red ellipses in (g) are misclassified small
plaques.
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For the data of each stage, the weighted mean is calculated
according to the number of occurrences within 1% of the varia-
tion, which obtained 3.338% for 8 weeks, 11.952% for 12
weeks, 15.125% for 16 weeks, and 23.375% for 20 weeks,

independently. To vividly discuss the quantification trend of
tumors, Fig. 9 plots bar graphs and line graphs showing the dis-
tribution of percent tumor area in the liver samples in accor-
dance with the data shown in Table 2. The left main axis and

Fig. 9 The distribution of percent tumor area in liver samples.

Fig. 8 The processed results at the four different time points. (a)–(e) Single-band images at 770 nm,
(f)–(j) standard classification images, (k)–(o) SVM-based results, and (p)–(t) results of the proposedmethod.
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the series of green bars explain the percent tumor area for each
experimental time point, and the right secondary axis and the red
polyline reveal the weighted mean of the datasets, which
changes over time. As discussed above, in the early hyperspec-
tral images of pathological liver sections, it is difficult to identify
and extract the tumor components, and the difference in the
degree of tumor lesions is not entirely visible. From the table
and diagram, it can also be concluded that liver tumors develop
faster after 8 weeks, and in the development of later stages, the
extent of liver tumors has begun to diversify. For example, in
a few of 16-week liver tissue hyperspectral images, the percent
tumor area is higher than that in the 20-week images. In addi-
tion, in the set of experimental data from the same time point,
the variation among samples is even >10%; tumor lesions in
some of the 20-week images cover a wide range of areas,
such as nearly one-third of the liver tissue section. In contrast,
we did not detect any tumor components in the control rat sam-
ples at the four time points.

The tracking assessments and quantitative statistics of tumors
at four different stages further demonstrate the possible signifi-
cance of hyperspectral imaging in prediagnosis of liver tumors.
Although the statistical data in the above diagrams offer some
information about the lesion status of liver tumors, it lacks vis-
uality. In the clinical diagnosis of liver tumors, pathologists pre-
fer to observe image data, and analyzing the pathological
structure of liver tumor is an indispensable part for diagnosis.
In practical applications, the pathological section images col-
lected via the optical microscope are processed with the dyeing
agent, but the displayed colors are relatively dull, the interesting
areas are not prominent, and the amount of information is rel-
atively small as shown in the first column of Fig. 10. Especially
in the 8-week true color image (b), the presence of normal
hepatic lobules and liver cells can be inspected in partial tissue
sections, but almost for all the sections, the human eye can
hardly directly distinguish the location of the liver tumors.

The pseudocolor synthesis method based on wavelength
combination can solve the problem of true color images. The
maximum difference in standard deviation occurs approxi-
mately in the vicinity of 700 and 900 nm and the longer the
distance between the combined wavelengths, the smaller the
minimum sum of correlation coefficients according to Fig. 5(b).
The experimental results show that the wavelengths at 700 and
900 nm of the preprocessed hyperspectral grayscale image are
selected as the pseudocolor synthesized R and B channels, and

Table 1 The comparison of classification performance with different
methods.

Method

Time point
8

weeks
12

weeks
16

weeks
20

weeksIndices

SVM OA (%) 92.32 80.39 80.97 85.06

Kappa 0.2996 0.3961 0.5688 0.5997

Example-based
feature extraction

OA (%) 92.38 95.10 95.40 95.54

Kappa 0.8257 0.8712 0.9197 0.9162

Fig. 10 Histopathological structure of bile duct carcinoma at different stages. (a)–(e) Original true color
images in normal rat, 8, 12, 16, and 20 weeks, (f) normal liver lobule, (g) normal portal area (taken from
other normal rat sample), (h) false lobule, (i) deformed central vein, (j) connective tissue hyperplasia in
the portal area, (k) fibroplasia, and (l) intestinal type cholangiocarcinoma.

Table 2 Liver tumor classification statistics (the percent tumor area in
the classification results).

Time point

8 weeks 12 weeks 16 weeks 20 weeksSample

Experimental
group (%)

3.725 12.441 14.781 17.823

2.734 11.803 12.653 19.496

2.906 10.313 16.103 23.857

3.897 11.666 13.582 25.242

3.573 12.864 16.386 19.218

4.257 11.737 15.767 22.874

3.641 9.284 14.558 26.630

1.658 12.114 18.473 32.582

2.589 12.103 15.297 24.187

3.075 11.966 14.221 25.691

Control group (%) 0 0 0 0

Weighted mean (%) 3.338 11.952 15.125 23.375
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the image of the classification result as the G channel, the opti-
mal synthetic effect can be obtained. The third column in Fig. 11
exhibits the eventually experimental results of the four stages, in
which the dark blue area is the protruding part of the liver
tumors, and the noncancerous one is synthesized as greenish,
resulting in enhanced visual contrast. The greenish regional
compositions will be the direction of our next research. The
strong chromatic aberration is more advantageous to observe
the morphological change of tumor. Figures 11(a)–11(c)
show the normal rat images in the control group; only the nor-
mal tissues like liver lobule and portal area can be found in the
pseudocolor composite images. In the early stage, the distribu-
tion of liver cells is scattered, and the convergent nuclear color
of the liver cells is slightly deepened as shown in Fig. 11(f),

meanwhile, the central vein has not yet shifted, both in quantity
and volume are small. In the medium stages, many false lobules
are appearing in the liver tissue, which is the characteristic lesion
of cirrhosis and tumor. The false lobules [Fig. 10(h)] are hyper-
plasias of hepatic cell masses formed by the proliferation of
fibrous tissue separation and entrapment, with a disordered
arrangement of hepatic cords. The hyperplasia of connective tis-
sues emerges in the portal area [Fig. 10(j)], and the central vein
appears multiple and deformed [Fig. 10(i)], which are shown in
Figs. 11(i) and 11(l). Referring to Fig. 11(o), the characteristics
of the tumors in the pathological liver image at 20 weeks have
been clearly highlighted, accompanied by hepatocyte steatosis,
necrotic structures, namely, a large number of connective tissue
hyperplasia in the portal area, dysplasia of bile duct cells, and

Fig. 11 Comparison of original true color (microscope) images with pseudocolor composite images
at different time points. (a), (d), (g), (j), and (m) Original true color images in normal rats at 8, 12, 16,
and 20 weeks; (b), (e), (h), (k), and (n) corresponding single-band images; and (c), (f), (i), (l), and
(o) corresponding pseudocolor composite images.
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tumor formation [Fig. 10(l)]. By comparing the true color
images, single-band images, and pseudocolor composite images
from the same time point, the advantage of hyperspectral images
can be found. Hyperspectral images cover abundant spatial and
spectral information of liver tumors, on this basis, quantitative
statistics analysis affords a foundation for judging the extent of
early tumors and pseudocolor composite images in the RGB
color space can effectively weaken the influence of noncancer-
ous components in liver tissues and reflect the liver lesion status.

4 Conclusion
The age of onset of hepatic malignancy presents a trend of
youthfulness. Millions of people are diagnosed with liver dis-
ease every year and even die of liver cancer. Although at present,
with the developments at the therapeutic level, the means for
treating liver tumors are becoming more and more advanced.
However, the timely treatment of liver tumors still poses a
bottleneck in the medical field, and prediagnosis is of vital
importance for controlling the deterioration of tumors. This
paper provides a method that can probably be used for early
diagnosis of liver tumors. Rat liver pathological sections
under four different stages are utilized as experimental samples,
and MHSI systems are applied to collect multiple types of
images for processing and analysis. First, the pretreatment of
the original image eliminates a multitude of interference factors.
Second, in the liver tumor feature extraction, the MWA supplies
the basis for spatial segmentation in virtue of grayscale, while
the SVM algorithm combines the spectral properties of hyper-
spectral images for identification operation. After removing
small plaques with MMA, the percent tumor area in the liver
samples is calculated for quantitative analysis, and pseudocolor
images are synthesized to visualize the changes in the pathologi-
cal structure of liver tissues. Ultimately, the pooled results at 8,
12, 16, and 20 weeks are 3.338%, 11.952%, 15.125%, and
23.375%, respectively. We compared the SVM and MWA-
based SVM results with the standard classification images.
The results proved the feasibility of our method. This finding
suggests the potential of MHSI in the field of medical image
processing, particularly in tumor prediagnosis. In later studies,
more liver tissue sections in the early stage (such as 8 weeks and
earlier) with suspected lesions will be used to verify the validity
of the proposed method. In addition, there is no refinement of
the liver tumor components in the current work, and extensive
experiments are needed in the future to extract more complex
liver tissue features and yield more accurate information for
early diagnosis.
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