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Abstract. We study a problem scenario of super-resolution (SR) algorithms in the context of whole slide imaging
(WSI), a popular imaging modality in digital pathology. Instead of just one pair of high- and low-resolution images,
which is typically the setup in which SR algorithms are designed, we are given multiple intermediate resolutions
of the same image as well. The question remains how to best utilize such data to make the transformation learn-
ing problem inherent to SR more tractable and address the unique challenges that arises in this biomedical
application. We propose a recurrent convolutional neural network model, to generate SR images from such
multi-resolution WSI datasets. Specifically, we show that having such intermediate resolutions is highly effective
in making the learning problem easily trainable and address large resolution difference in the low and high-
resolution images common inWSI, even without the availability of a large size training data. Experimental results
show state-of-the-art performance on three WSI histopathology cancer datasets, across a number of metrics.
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1 Introduction
Many computational problems in medical imaging can be posed
as a transformation learning problem, in that they receive some
input image and transform it into an output image under domain-
specific constraints. The image super-resolution (SR) problem is
a typical problem in this category, where the goal is to recon-
struct a high-resolution (HR) image given only a low-resolution
(LR), typically degraded, image as input. Such problems are
challenging to solve due to their highly ill-posed and undercon-
strained nature, since a large number of solutions exist for any
given LR image, and the problem is especially magnified when
the resolution ratio between the HR and LR images is large.
Until recently, convolutional neural networks (CNN) have been
the main driving tool for SR in computer vision applications,
since they have the ability to learn highly nonlinear complex
functions that constitute the mapping from the LR to the HR
image. Several recent results have shown state-of-the-art results
for the SR problem.1–3 Since such CNN frameworks involve
a large number of parameters, empirical evidence has shown
that the corresponding models need to be trained on large
datasets to show reproducible accuracy and avoid overfitting.
This is not a problem for most applications in computer vision,
where datasets in order of millions or larger (e.g., ImageNet,4

TinyImages,5 to name a few) are readily available. But for other
application domains, particularly microscopic or medical imag-
ing, such large sample sizes are hard to acquire, given that each
image dataset has to be acquired individually, with significant

human involvement. In this paper, we study an important SR
application in the context of digital pathology and discuss how
the limitations inherent to CNN-based SR methods can be
addressed effectively in this context. This is described next.

1.1 Application Domain

The type of imaging modality we are interested in is called
whole slide imaging (WSI) or virtual microscopy. WSI is a
recent innovation in the field of digital pathology in which dig-
ital slide scanners are used to create images of entire histologic
sections. Traditionally, the use of the optical capabilities of a
microscope to “focus” the lens on a small subsection of the slide
(based on the field of view of the device) to review and evaluate
the specimen is often carried out by a trained pathologist. This
process may need to be repeated for other sections of the slide
depending on the scientific/clinical question of interest, toward
obtaining consistently well-focused digital slides. WSI essen-
tially automates this procedure for the whole slide. The ability
to do so, automatically for a large number of slides, ideally
capturing as much information as the pathologist may have
been manually able to glean from the histological specimen via
a light microscope, offers an immensely powerful tool with
many immediate applications in clinical practice, research, and
education.6–8 For instance, WSI makes it feasible to solicit
subspecialty disease expertise regardless of the location of the
pathologist, integration of patient medical records in their health
portfolio, pooling data between research institutions, and reduc-
ing long-term storage costs of histological specimens. However,
given the relatively recent advent of WSI technology, there are
several barriers that still need to be overcome, before it is widely
accepted in clinical practice. The chief among these are the fact
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that HRWSI scanners, which have been shown to match images
obtained from light microscopy in terms of quality for diagnos-
tic capability, are typically very expensive, even for LR usage.
In addition, the size of the files produced also generates a
bottleneck. Typically, a virtual slide acquired at HR is about
1600 to 2000 megapixels, which results in a file size of several
gigabytes. Such files are typically much larger that image files
used by other clinical imaging specialties such as radiology.
If one has to transport, share, or upload multiple such files
or 3D stack, it results in a consequential increase of storage
capacity and network bandwidth. Notwithstanding these issues,
WSI offers tremendous potential and numerous advantages
for pathologists, which is why it is important to find a way
to alleviate the existing issues with WSI, such that it can be
widely applicable. One potential way to address these issues
is to use images from low magnification slide scanners, which
are widely available, easy to use, comparatively inexpensive,
and can also quickly produce images with smaller storage
requirements. However, such LR images can increase the
chance of misdiagnosis and false treatment if used as the
primary source by a pathologist. For example, cancer grading
normally requires identifying tumor cells based on size and
morphology assessments,9 which can be easily distorted in low
magnification images. If such images were indeed to be used
for research, clinical, or educational purposes, we need a way
to convert such LR data and produce an output that closely
resembles images acquired by a top-of-the-line WSI scanner,
without substantial increase in storage and computational
requirements.

1.2 Solution Strategies and Associated Challenges

One way to address the above issues is to dynamically improve
the quality and resolution of LR images to render them compa-
rable in quality to those acquired from HR scanners, as and
when needed by the end user. Such a proposed workflow would
need a fraction of the time and can yield near real-time quantifi-
ably accurate results at a fraction of the setup cost of a standard
WSI system. The implementation of such a system would
require an SR approach that works well for WSI images. But
still, we find that there is no off-the-shelf deep network archi-
tecture that can be used for our application directly. The reasons
for this are numerous. First, most existing methods have been
trained on databases of natural images. However, the WSI
images under consideration do not have the same characteristics
as natural images, such as, textures, edges, and other high-level
exemplars, which are often leveraged by the SR algorithms.
Second, such deep learning models are often trained using large
training datasets (usually consisting of synthetic/resized HR–LR
pairs), in the order of millions. This does not directly translate to
our application for two reasons: (a) large training datasets are
typically harder to acquire since each image pertains to a unique
acquisition that requires significant human involvement, and
(b) in our case, the LR images are acquired from a different
scanner and is not just a resized version of HR image. Third
and perhaps the most important limitation is that existing
deep SR methods typically only reconstruct successfully up
to a resolution increase factor of 4, whereas in case of WSI, the
resolution (from a low-cost scanner to an expensive HR scanner)
can increase up to a factor of 10×, since there can be wide vari-
ance in resolution between an LR scanner (4×) to HR scanners,
which typically scan at 20× or 40×. We discuss this issue in
detail in the following paragraph.

1.3 Our Contribution

Existing CNN-based methods have shown limited performance
in scenarios when the resolution difference is high. The reason
for this is that the complexity of the transformation that morphs
the LR image to the HR one increases greatly in such situations,
which in turn manifests in the CNN models taking longer to
converge, or learning a function that generalizes poorly to
unseen data. A typical way to address this issue is to make the
CNN models deeper, by adding more layers (>5 layers) or
increasing the number of examples required to learn a task
to a given degree of accuracy while still keeping the network
shallow. Both these directions pose challenges for our applica-
tion: (a) a deeper network is associated with far more parame-
ters, increasing the computational and memory footprint, to the
extent that model may not be applicable in a real-time setup
and (b) increasing the number of samples the extent needed
would be impractical, due to associated time and monetary
costs.

Our approach to solving this problem draws upon the inher-
ent nature of the SR problem. While it is hard to acquire a large
training dataset in this scenario, it is much more time and cost
efficient to obtain the WSI images at different resolutions by
varying the focus of the scanner. In this paper, we study how
such multi-resolution data can be used effectively to make the
transformation learning problem more tractable. Suppose I1 and
Ih represent a particular LR and HR image pair. If Ih is a
significant resolution ratio higher than I1, learning their direct
transformation function fðI1Þ ¼ Ih can be challenging leading
to a overparameterized system. But if we had access to some
intermediate resolutions say I2; : : : Ih−1 (with a smaller resolu-
tion change between consecutive images), it makes intuitive
sense that transformation that converts an image of a given
resolution into the closest HR image would be roughly the
same across all the resolutions considered, if we assume
that resolution changes vary smoothly across the sequence.
Having more image pairs ðIk−1; IkÞ for k ¼ 2: : : h to train,
it may be computationally easier to learn a smooth function f̂,
such that f̂ðIk−1Þ ≈ Ik for all k. In this paper, we formalize this
notion and develop a recurrent convolutional neural network
(RCNN) [Note that the acronym RCNN is also used to refer
to region-based CNNs,10 but in the context of this paper, we
use it to refer to recurrent convolutional neural network.] to
learn from multi-resolution slide scanner images. Our main
contributions are as follows. (1) We propose a new version of
SR problem motivated from this problem, multi-resolution
SR (MSR), where the aim is to learn the transformation func-
tion, given a sequence of resolutions, rather than simply the
LR and HR images. To the best of our knowledge, this is new
problem scenario for SR that has not been studied before.
(2) We propose an RCNN model to solve the MSR problem.
(3) We demonstrate using experimental results on three WSI cell
lines that the MSR idea can indeed reduce the need for large
sample sizes and still learn the transformation that generalizes
to unseen data.

2 Related Work
We summarize the current literature on three main aspects, per-
taining to our model in this section: (a) deep network models for
SR, (b) recurrent neural networks, and (c) CNN architecture for
small sample size training. We discuss them briefly next.
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2.1 Deep Network Models for SR

Stacked collaborative local autoencoders are used11 to construct
the LR image layer by layer. Reference 12 suggested a method
for SR based on an extension of the predictive convolutional
sparse coding framework. A multiple layer CNN, similar to
our model, inspired by sparse-coding methods, is proposed in
Refs. 1, 2, and 13. Chen and Pock14 proposed to use multistage
trainable nonlinear reaction diffusion as an alternative to CNN
where the weights and the nonlinearity are trainable. Wang
et al.15 trained a cascaded sparse coding network from end to
end inspired by learning iterative shrinkage and thresholding
algorithm16 to fully exploit the natural sparsity of images.
Recently, Ref. 17 proposed a method for automated texture syn-
thesis in reconstructed images by using a perceptual loss focus-
ing on creating realistic textures. Several recent ideas have
involved reducing the training complexity of the learning mod-
els using approaches, such as Laplacian pyramids,18 removing
unnecessary components of CNN,19 and addressing the mutual
dependencies of LR and HR images using deep back-projection
networks.20 In addition, generative adversarial networks (GAN)
have also been used for the problem of single image SR, these
include Refs. 21–24. Other deep network-based models for
image SR problem include Refs. 25–28. We also briefly review
SR approaches for sequence data such as videos. Most of the
existing deep learning-based video SR methods using motion
information inherent in video to generate a single HR output
frame from multiple LR input frames. Kappeler et al.29 warp
video frames from the preceding and subsequent LR frames
onto the current one using the optical flow method and pass
them through a CNN that produces the output frame.
Caballero et al.30 followed the same approach but replaced the
optical flow model with a trainable motion compensation net-
work. Huang et al.31 used a bidirectional recurrent architecture
for video SR with shallow networks but do not use any explicit
motion compensation in their model. Other notable works
include Refs. 32 and 33.

2.2 Recurrent Neural Networks

A recurrent neural network (RNN) is a class of artificial neural
network where connections between nodes form a directed
graph along a sequence. This allows it to exhibit temporal
dynamic behavior for a time sequence. Unlike feedforward
neural networks such as CNNs, the input and outputs are
not considered independent of each other, rather such models
recompute the same/similar function for each element in the
sequence, with the intermediate and final output of subsequent
elements in the network being dependent on the previous com-
putations on elements occurring earlier in the sequence. RNNs
have most frequently been used in applications for language
modeling,34 speech recognition,35 and machine translation.36

But it can be applied to many learning tasks applied to sequence
data, for more details, see survey paper by Ref. 37.

2.3 CNN Architectures for Small Sample Size
Training

In this regard, Erhan et al.38 devised unsupervised pretraining of
deep architecture and showed that such weights of the network
generalize better than randomly initialized weights. Mishkin
and Matas39 have proposed layer-sequential unit-variance that
utilizes the orthonormal matrices to initialize the weights of

CNN layer. Andén and Mallat40 proposed scattering transform
network (ScatNet), which is a CNN-like architecture where
predefined Morlet filter bank is used to extract features.
Other notable architectures in this regard include PCANet,41

LDANet,42 kernel PCANet,43 MLDANet,44 DLANet,45 to name
a few.

2.4 Deep Network Models in Microscopy

Since the application domain of this paper is in microscopy, we
briefly review related papers that have used deep networks in
this area. Most similar to our work is Rivenson et al.,46 who
showed how to enhance the spatial resolution of LR optical
microscopy images over a large field of view and depth of field.
But unlike our model, this framework is meant for single-image
SR, where the model is trained on pairs of HR and LR images
and provided a single LR image at test time. The design of this
model includes a single CNN architecture, though they show
that feeding the output of the CNN, back to the input, can
improve results further. Wang et al.47 proposed a GAN-based
approach for super-resolving confocal microscopy images to
match the resolution acquired with a stimulated emission
depletion microscopes. Grant-Jacob et al.48 designed a neural
lens model based on a network of neural networks, which is
used to transform optical microscope images into a resolution
comparable to a scanning electron microscope image. Sinha
et al.49 used deep networks to recover phase objects given their
propagated intensity diffraction patterns. Other related methods
that have used deep learning-based reconstruction approaches
for various applications in microscopy include Nehme et al.,50

Wu et al.,51 and Nguyen et al.52 A more detailed survey of deep
learning methods in microscopy can be found in Ref. 53.

3 Main Model
Here, we discuss our main model for obtaining HR images from
LR counterparts. First, we briefly outline the problem setting.
Let H and L denote the HR and LR image sets, respectively.
In addition, we use two more intermediate resolutions of all
images, we call these sets I1 and I2, respectively. For notational
ease, we refer to L as I0 and H as I3, respectively. These image
sets can be ordered in terms of increasing resolution, that is,
I0 ≤ I1 ≤ I2 ≤ I3 w.r.t. to image size. For training/learning,
we assume image to image correspondence among these four
sets are known.

For any pair of images ðIj; Ijþ1Þ, we need to learn the trans-
formation fj that maps Ij to the corresponding higher resolution
image Ijþ1. This can be done using a CNN architecture, with a
number of intermediate convolutional layers, which we discuss
shortly. The CNN pipeline then needs to be replicated for each
of the three pairs ðI0; I1Þ, ðI1; I2Þ, and ðI2; I3Þ. However, the
main premise of this work is that each CNN subarchitecture can
be informed by outputs of other CNN subarchitectures, since
they are implementing similar functions. To do this, we propose
an RCNN that uses three CNN subarchitectures to map each LR
images to next HR one. These three CNN subnetworks are then
interconnected in a recurrent manner. Furthermore, we impose
that the CNN pipelines share similar weights, to ensure that
function learned for each pair of images is roughly the same.
We describe the details of our model next. First, we discuss the
components of the CNN architecture in Sec. 1, followed by
the motivation and design choices for the RCNN framework
in Sec. 2.
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3.1 CNN Subnetwork

Here, we describe the basic structure of each CNN subnetwork
and its constituent layers briefly. A more detailed description
can be found in Sec. 7. Note that the components/layers of each
CNN pipeline is kept the same, see Fig. 1. The first layer is a
feature extraction-mapping layer that extracts features from LR
images (denoted by Yj

1 for the j’th pipeline), which are then
served as input to the next layers. This is followed by three con-
volutional layers. We briefly elaborate on this, since they are
useful to understand the RCNN terminology in the next section.

3.2 Convolutional Layers

The feature extraction layer is followed by three additional
convolutional layers. We also refer to these as hidden layers,
denoted by Hj

i, which is the i’th hidden layer (i ∈ f2;3; 4g)
in the j’th CNN pipeline. The input to this layer is referred
to as Yj

i−1, and the output is denoted by Yj
i. The filter functions

in these intermediate layers can be written as

EQ-TARGET;temp:intralink-;sec3.2;63;368Yj
i ¼ σðθji × Yj

i−1 þ bji Þ i ∈ 2;3; 4; j ∈ 0;1; 2;

where θji and bji represent the weights and biases of each layer,
respectively. Each of the weights θji is composed of ni filters of
size ni−1 × fi × fi. n2 is set at 32 and ni ¼ ni−1

2
for i ∈ 3;4. This

progressive reduction in the number of filters leads to computa-
tional benefits as observed in numerical experiments. The filter
sizes fi are set to f3;2; 1g for each of the three layers, respec-
tively, similar to hierarchical CNNs.

The last layer of the CNN architecture consists of a subpixel
layer that upscales the LR feature maps to the size of the
HR image.

3.3 Recurrent Convolution Network

The recurrent convolution network is built by interconnecting
the hidden units of the CNN subarchitectures, see Fig. 2.
We index the CNN pipeline components with superscript
j ∈ 0;1; 2 with the j’th pipeline being given image Ij as input
and reconstructing the image Ijþ1. The basic premise of our
RCNN model is that the hidden units processing the each of the
images can be informed by the outputs of the hidden units in
other CNN pipelines. We use one directional dependence (low
to high) as it is more challenging to reconstruct HR images com-
pared to lower resolution ones. We can introduce bidirectional
dependencies as well, but in practice, this increases the number

of parameters substantially and contributes to an increase in
training time for the model.

Besides the feedforward connections already discussed as a
part of the CNN subarchitectures, we introduce two additional
connections to encode the dependencies among the various
hidden units, see Fig. 2. These are as follows.

3.3.1 Recurrent convolutional connection

The first type of connection, called recurrent convolutions, is
denoted by red lines and aims to model the dependency across
images of different resolutions at the same hidden layer i. These
convolutions connect adjacent hidden layers of successive
images (ordered by resolutions), that is, the current hidden layer
Hj

i is conditioned on the feature maps learned from the hidden
layer at the previous LR image Hj−1

i .

3.3.2 Prelayer convolutional connections

The second type of connections, called prelayer convolutions, is
denoted by blue lines. This is used to model the dependency of a
given hidden layer of the current imageHj

i on the hidden layer at
the immediate previous layer corresponding to LR image Hj−1

i−1 .
This endows the hidden layer with not only the output of the
previous layer but also information about how a lower resolution
image has evolved in the previous layer.

Since the image sizes differ at each CNN pipeline, when
implementing the dependence, we resize the higher-order
images to match the size of images processed in the current pipe-
line. This resizing can be denoted by a function ηð:Þ.

Note that the first CNN pipeline (j ¼ 0), which processes I0

as input, contains only feedforward connections, hence is iden-
tical to the network in Fig. 1. We incorporate the three types of
connections (feedforward, recurrent, and prelayer) in the next
two CNN pipelines (j ∈ 1;2). Let the output of hidden layer
Hj

i be denoted by Yj
i. Then, we can rewrite functions learned

and the outputs at the hidden layers of the CNN pipelines
j ∈ 1;2 as follows. We start with the functions learned at first
hidden layer (i ¼ 2), which can be written as

EQ-TARGET;temp:intralink-;e001;326;151Yj
2 ¼ σ½Yj

1 þ θj2 × ηðYj−1
2 Þ þ θ̂j2 × ηðYj−1

1 Þ þ bj1� j ∈ 1;2:

(1)

For the subsequent hidden layers (i ∈ 3;4), the function can be
written as

Fig. 1 Architecture of the proposed CNN for image super-resolution.
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EQ-TARGET;temp:intralink-;e002;63;402

Yj
i ¼ σ½Yj

i−1 þ θji × ηðYj−1
i Þ þ θ̂ji × ηðYj−1

i−1 Þ þ bji �
j ∈ 1;2; i ∈ 3;4: (2)

The variables θji and θ̂ji represent the weights of the recurrent
and prelayer connections, respectively, whereas bji represents
the biases at the i’th layer of the j’th pipeline. Note that the
ηð:Þ may be replaced by the subpixel layer, but this contributes
to an increase in the training time. Therefore, we implemented
the ηð:Þ as a simple bicubic interpolation.

3.4 Training and Loss Function

The complete architecture of our network can be seen in Fig. 3.
The output from Eq. (2) (for pipelines j ¼ 1 and j ¼ 2) is then
passed on as an input to the subpixel layer [described in Eq. (4)],
which outputs the desired prediction (let this be denoted by Rj).
For the pipeline (j ¼ 0), the prediction is simply R0 ¼ Y0

5. This
network is learned by minimizing a weighted function of mean
square error (MSE) and structured similarity metric (SSIM)
between the predicted HR and the ground truth at each pipeline

EQ-TARGET;temp:intralink-;e003;63;171OðH;RÞ ¼
X2

j¼0

fρMSEðIjþ1; RjÞ

þ ðρ − 1Þ½1 − SSIMðIjþ1; RjÞ�g; (3)

where MSEðIjþ1; RjÞ ¼ kIjþ1 − Rjk2 and the structured simi-
larity objective is defined as SSIMðIjþ1; RjÞ ¼ LðIjþ1; RjÞα
CðIjþ1; RjÞβSðIjþ1; RjÞγ , where LðIjþ1; RjÞ is the luminance-

based comparison, CðIjþ1; RjÞ is a measure of contrast differ-
ence, and SðIjþ1; RjÞ is the measure of structural differences
between the two images Ijþ1 and Rj. α, β, and γ are kept con-
stant and ρ is set to .75.

The objective/loss function in Eq. (3) is optimized using
stochastic gradient descent. During optimization, all the filter
weights of recurrent and prelayer convolutions are initialized
by randomly sampling from a Gaussian distribution with mean
0 and standard deviation 0.001, whereas the filter weights of
feedforward convolution are set to 0. Note that one can also
initialize these weights by pretraining the CNN pipeline on a
small sized dataset. We experimentally find that using a smaller
learning rate (1e − 5) for the weights of the filters is crucial to
obtain good performance.

4 Experiments

4.1 Datasets

We performed experiments to evaluate our RCNN approach on
three previously published tissue microarray (TMA) cancer
datasets, a breast TMA dataset consisting of 60 images,54 and
a kidney TMA dataset with 381 images,55 and a pancreatic
TMA dataset with 180 images.56 The datasets are summarized
in Table 1.

4.2 Imaging Systems

In the datasets we analyze, highest resolution images were
acquired and digitalized at 40× using an Aperio CS2 digital
pathology scanner (Leica Biosystems),57 with 4 pixels∕μm, and

Fig. 2 Connections between hidden units of the three CNN subarchitectures: feedforward connections
(in black), recurrent connections (in red), and prelayer connections (in blue).
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lowest resolution images were acquired and digitized using
PathScan Enabler IV58 with 0.29 pixels∕μm (4×). Besides
these, we have acquired images at two different resolutions
(10× and 20× from the Aperio CS2 digital pathology scanner,
which served as our intermediate resolutions). These images are
then resized (in the order of resolution) to 256 × 256, 512 × 512,
1024 × 1024, and 2048 × 2048, which provides us the dataset
with four different resolutions.

4.3 Evaluations

We evaluate various aspects of our RCNN model to determine
the efficacy of our method. First, we evaluate the quality of
reconstruction of our RCNN model compared to a single CNN
pipeline (which is a baseline for our model) and other compa-
rable methods for SR. We show both qualitative and quantitative
results in this regard. Second, we study the advantage of having
intermediate resolutions, by varying the number of resolutions
available. We also analyze how useful our obtained reconstruc-
tions are toward end-user applications, such as segmentation and
perform a user study, done by a pathologist to evaluate the utility
of the reconstructed images for cancer grading. In addition, we
study how the reconstruction accuracy is affected as a function

of the training set size. Finally, we discuss the parameters used
and the computational time requirements of our model. We
discuss these issues next.

4.3.1 Quality of reconstruction

Metrics. We evaluate the reconstruction quality of the
obtained images by our approach by evaluating it relative to
HR ground truth image and calculating seven different metrics:
(1) root mean square error (RMSE), (2) signal-to-noise ratio
(SNR), (3) SSIM, and (4) mutual information (MI), (5) multi-
scale structured similarity (MSSIM), (6) noise quality measure
(NQM),59 and (7) weighted peak signal-to-noise ratio
(WSNR).60 RMSE should be as low as possible, whereas
SNR, SSIM (1 being the maximum), MSSIM (1 being the maxi-
mum), and the remaining metrics, should be high for good
reconstruction.

Experimental setup. Note that our model was trained by
providing three sets of images (of three different resolutions)
as input. However, our testing experiments can be done in the
following two settings: (a) in the first case, we provide the
images of the same three resolutions I0, I1, and I2 as input
to the trained model, which then outputs the reconstructed
highest resolution image I3. We call this setup RCNN(full).
(b) In the second case, we see how our model behaves given
only the lowest resolution image I0. In this case, we first gen-
erate the two intermediate resolutions as follows. First, we only
activate pipeline j ¼ 0, which outputs I1. Then, use this as input
and activate both pipelines j ¼ 0 and j ¼ 1, which then recon-
structs I2 as well. Using I0 and the reconstructed I1 and I2 as
input, we activate all three pipelines and reconstruct I3. We call
this setup RCNN(1 input).

Table 1 Summary of datasets.

Dataset Number of images Source

Breast 60 53

Kidney 381 54

Pancreas 180 55

Fig. 3 Architecture of our proposed RCNN for image super-resolution.
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Comparable methods. To the best of our knowledge, we do
not know of any other neural network framework to study the
MSR problem presented in this paper. Therefore, to compare
our method to other state-of-art methods, we choose other SR
approaches that work in the two resolution setting (low and
high). Our default baseline is the CNN architecture shown in
Fig. 1. We refer to this method as CNN. In addition, we also
compare with the following methods: (i) the CNN-based frame-
work (FSRCNN) by Dong et al.,13 (ii) a CNN model that uses
a subpixel layer (ESCNN), and (iii) a GAN-based approach
for SR.21

Results. Results for the breast, kidney, and pancreatic data-
sets are shown in Tables 2–4, respectively. In each case, we see
that the RCNN(full) setting outperforms all other methods,
giving a significant improvement in all the metrics calculated.
A qualitative analysis of the reconstructed images in Figs. 4–6
shows that the reconstructed images are indeed very similar to
the HR images. The comparatively poorer performances of com-
parable methods, such as FSRCNN or SRGAN, are expected

since these methods are not designed to learn a resolution ratio
of 8 used in our experiments. Still we find that RCNN(1 input),
which is trained on all three input resolutions but tested by pro-
viding the lowest resolution only, outperforms the other base-
lines, showing that the weights learned our model generalizes
better than other neural network models for this difficult learn-
ing task. The qualitative results showing the performance of
RCNN(1 input) is shown in Fig. 7.

4.3.2 Effect of the number of intermediate resolutions

Here we study the effect of having intermediate resolution
images toward the quality of reconstruction. For this purpose,
besides the RCNN(full), which uses two intermediate resolu-
tion, we also trained a model with only one intermediate reso-
lution I2, besides the LR and HR images I0 and I3. That is, the
RCNN models have only two pipelines with inputs I0 and I2,
respectively. We call this model RCNN(1 layer). We train and
evaluate our model on each of the three datasets, see Table 5.
The results show RCNN(full) shows superior performance
compared to RCNN(1 layer), showing that each additional inter-
mediate resolution adds toward the quality of the reconstructions
produced.

4.3.3 Segmentation results

Pathological diagnosis largely depends on nuclei localization
and shape analysis. We used a simple color segmentation
method to segment the nuclei using K-means clustering to seg-
ment the image into four different classes based on pixel values
in Lab color space.61 Following this, we use the Hadamard prod-
uct of each class with the gray level image of the original bright-
field image, computed average of pixel intensities in each class,
and assigned the lowest value to the cell nuclei. To evaluate
our results, we compare the segmentation of the reconstructed
images with the results from HR images (ground truth) for
20 samples from each group by computing the misclassification
error, which calculates the percentage of pixels misclassified.
Results show that number of pixels misclassified from images
generated using our RCNN(full) method generates segmenta-
tion masks with lower number of pixels misclassified, followed
by RCNN(1 input) (Table 6).

Table 2 Quantitative results from reconstructed breast images.

Breast TMA

Metric SRGAN ESCNN FSRCNN CNN
RCNN
(full)

RCNN
(1 input)

RMSE 48.12 42.86 46.64 39.57 15.64 31.27

SNR 14.63 15.37 14.95 16.37 24.36 18.37

SSIM 0.40 0.35 0.42 0.34 0.98 0.51

MI 0.05 0.09 0.01 0.08 0.31 0.36

MSSIM 0.42 0.39 0.19 0.38 0.95 0.53

NQM 0.37 0.39 0.28 1.09 20.33 2.48

WSNR 13.83 14.61 14.78 15.77 26.59 18.04

Note: Best values are highlighted in bold.

Table 3 Quantitative results from reconstructed kidney images.

Kidney TMA

Metric SRGAN ESCNN FSRCNN CNN
RCNN
(full)

RCNN
(1 input)

RMSE 28.75 25.48 38.90 29.15 11.60 22.92

SNR 19.00 20.06 16.35 18.96 28.31 21.03

SSIM 0.82 0.72 0.39 0.76 0.98 0.85

MI 0.11 0.16 0.07 0.13 0.35 0.31

MSSIM 0.70 0.70 0.41 0.68 0.97 0.78

NQM 7.77 4.61 0.45 6.80 11.15 10.30

WSNR 20.55 20.34 15.71 19.58 19.75 21.89

Note: Best values are highlighted in bold.

Table 4 Quantitative results from reconstructed pancreatic images.

Pancreas TMA

Metric SRGAN ESCNN FSRCNN CNN
RCNN
(full)

RCNN
(1 input)

RMSE 84.59 37.30 39.56 35.39 20.32 33.50

SNR 10.0 16.78 16.26 17.26 22.07 17.78

SSIM 0.39 0.52 0.42 0.64 0.96 0.79

MI 0.07 0.16 0.16 0.16 0.29 0.33

MSSIM 0.39 0.50 0.42 0.56 0.93 0.69

NQM 0.14 7.10 5.95 10.24 16.94 10.97

WSNR 7.93 16.27 15.57 16.99 24.79 17.88

Note: Best values are highlighted in bold.
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4.3.4 Grading user study by pathologists

Pathological assessment of tissue samples is usually considered
the gold standard that requires large magnification for micro-
scopic assessment or HR images. For example, in different types
of cancer patient prognosis and treatment plans are predicated
on cancer grade and stage.62 Tumor grade is based on pathologic
(microscopic) examination of tissue samples, conducted by

trained pathologists. Specifically, it involves assessment of the
degree of malignant epithelial differentiation, or percentage of
gland-forming epithelial elements, and does not take into consid-
eration characteristics of the stroma surrounding the cells.63–67

Accuracy of pathological assessment has a vital importance in
clinical workflow since the downstream treatment plans mainly
rely on that. Lack of interobserver and intraobserver agreement

Fig. 4 Results of reconstruction of breast cancer TMA: columns 1 and 3 show HR and LR images and
column 2 shows the reconstructed image. Rows 2 and 4 show a zoomed in region of interest from
the corresponding images in row 1 and row 3, respectively.
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in pathological tissue assessments is still of major concern,
which has been reported for many diseases including pancreatic
cancer,68 intraductal carcinoma of the breast,69 malignant
non-Hodgkin’s lymphoma,70 and soft tissue sarcomas,71 among
others. SR algorithms can mitigate this effect by making second
opinion and collaborative diagnosis easily accessible. However,
this is achievable if able to reconstruct fine morphological

details of the tissue image. For this project, we used recon-
structed images of 35 TMA cores randomly selected from
a TMA slide (PA 2072, US Biomax), which was graded on
HR images more than a year ago and was now graded on the
reconstructed images by our collaborator pathologist. These
were from different grades of cancer and normal tissue. Grading
for 22 TMA cores matched the previous grading by same

Fig. 5 Results of reconstruction of kidney cancer TMA: columns 1 and 3 show HR and LR images and
column 2 shows the reconstructed image. Rows 2 and 4 show a zoomed in region of interest from
the corresponding images in row 1 and row 3, respectively.
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pathologist. In general, the overall structure of the pancreatic
tissue was reconstructed good enough so that normal and grade
one was easier to identify based on overall gland shapes and in
case of grade one cancer the stroma surrounding the gland was
identifiable too. However, it was observed that differentiation
between grade 2 and 3 was more difficult since it requires visu-
alization of infiltrating individual tumor cells. Grading results
specific to individual cores is provided in Sec. 8.

4.3.5 Effect of training set size

The necessary size of the training set for a particular learning
task is generally hard to estimate and depends mostly on the
hardness of the learning problem as well as on the type of model
being trained. Here, we provide empirical evidence of how our
model behaves wrt to increasing the size of the training set. For
this purpose, we use the Kidney dataset, since it is the largest

Fig. 6 Results of reconstruction of pancreatic cancer TMA: columns 1 and 3 show HR and LR images
and column 2 shows the reconstructed image. Rows 2 and 4 show a zoomed in region of interest from
the corresponding images in row 1 and row 3, respectively.
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dataset considered in this paper. We vary the training size from
f50;100;150;200;300g. The test set is set to 50 in each case. We
analyze the quality of reconstruction by comparing the SNR in
each case.

As seen in Fig. 8, the SNR improves only slightly when the
training set is increased, indicating that a higher training size
does not significantly improve the image reconstruction metrics.

4.3.6 Parameters and running time

We implemented our model in TensorFlow using Python, which
has inbuilt GPU utilization capability. We used a workstation
with an AMD processor 6378 with a 2.4 GHz CPU, 48 GB
RAM and NVIDIA GPU 1070 TI graphics card. All our experi-
ments have been performed using GPU, which shows significant
performance gains compared to CPU runtime. The training
time of our models depends on various factors such as dataset
volume, learning rate, batch size and number of training epochs.
To report running times for training, we fix learning rate to 10−5,
dataset volume to 300 images, batch size to 2 and number of
training epochs to 105. The training time of our model is approx-
imately 20.9 hours. The time to generate a new HR image at
2048 × 2048 once the network is trained takes 1.4 minutes.
The test-time speed of our model can be further accelerated by
approximating or simplifying the trained networks with possible
slight degradation in performance.

Fig. 7 Results of reconstruction of all three cell types using RCNN(1 input): column 1 shows breast cells;
column 2 shows kidney cells; and column 3 shows pancreatic cells. The HR images for the breast cells
[images (a) and (d) in this figure] are shown in Figs. 4(a) and 4(d) and the corresponding LR images are in
Figs. 4(c) and 4(f), respectively. Similarly for the kidney [images (b) and (c) of this figure], the HR images
are in Figs. 5(a) and 5(d) and LR images are in 5(c) and 5(f), respectively. Finally, for the pancreatic cells
[(c) and (f) in this figure], the HR images are in Figs. 6(a) and 6(d) and LRn images are in 6(c) and 6(f),
respectively.

Table 5 Quantitative results from varying the number of intermediate
resolutions.

Breast TMA Kidney TMA Pancreas TMA

Metric
RCNN
(1 layer)

RCNN
(full)

RCNN
(1 layer)

RCNN
(full)

RCNN
(1 layer)

RCNN
(full)

RMSE 18.71 15.64 16.76 11.60 25.02 20.32

SNR 22.85 24.36 22.85 28.31 20.28 22.07

SSIM 0.85 0.98 0.95 0.98 0.94 0.96

MI 0.27 0.31 0.28 0.35 0.25 0.29

MSSIM 0.936 0.95 0.89 0.97 0.84 0.93

NQM 6.34 20.33 9.87 11.15 14.0 16.94

WSNR 24.91 26.59 25.63 30.60 22.18 24.79

Table 6 Quantitative results from segmentation on the three datasets.

Misclass error Breast Kidney Pancreas

RCNN (full) 0.1417 0.1758 0.1586

RCNN (1 input) 0.2358 0.1803 0.1630

CNN 0.2371 0.1908 0.1851
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5 Future Directions
This paper provides an innovative approach to utilize multi-
resolution images to generate a high quality reconstruction of
slide scanner images. In addition, this work also leads to several
interesting ideas that we will pursue as future work. We discuss
these briefly next.

1. We will study a variation of this model that is inspired
by mixed effects models popular in statistics. Here
the fixed effects will be modeled as function of other
higher resolution inputs and the random effects are
modelled as residual connection on the LR input in
each pipeline. This leads to a Residual variation of
the Recurrent Convolutional Network. We will study
this network in detail and analyze its computational
properties.

2. One of our future goal is also aimed at making our
RCNN model scalable to large datasets and higher
resolution ratios. In order to do so, we need a way of
speeding up the RCNN model to produce HR images
at a reduced computational and memory footprint. To
do this, we will adopt recent developments in deep
learning that show that one can substantially improve
the running time of deep CNNs by approximating by
linear filters and other related ideas.72

6 Conclusion
This paper studies a new setup for the SR problem, where the
input is multi-resolution slide scanner images, and the goal is
to utilize these to make the learning problem associated with
SR more tractable, so that it scales to an HR change in the
target reconstruction. We propose a RCNN for this purpose.
Results show that this model performs favorably when com-
pared to state-of-the-art approaches for SR. This provides
a key contribution toward the overarching goal of making
use of LR scanners over their HR counterparts, which opens
up new opportunities in histopathology research and clinical
application.

7 Appendix A: CNN Subnetwork
Here, we describe the basic structure of each CNN subnetwork
and its constituent layers. The components/layers of each CNN
pipeline are kept the same. The basic CNN architecture is sim-
ilar to the model described in our earlier paper,73 except it does
not involve the nearest-neighbor-based enhancement, which was

used to ensure that reconstructed image retains the finer details
of the original HR image, which are otherwise lost using a CNN
framework for learning the transformation. We avoid this step
since it is also computationally expensive to search a large data-
base of patches for nearest neighbors, especially for the output
sizes of HR images at 2048 × 2048 we want to reconstruct.
We also replace the ReLU function at the output of each con-
volutional layer with a leaky ReLU, which is known to have
better performance in practice. We describe the layer of the
CNN architecture next, see Fig. 1.

7.1 Feature Extraction-Mapping Layer

This layer is used as the first step to extract features from the LR
input images (Ij) for the j’th CNN subarchitecture. The feature
extraction process can be framed as a convolution operation and
hence implemented as a single layer of the CNN. This can be
expressed as

EQ-TARGET;temp:intralink-;sec7.1;326;557Ŷj
1 ¼ σðθj1 × Ij þ bj1Þ j ∈ 0;1; 2;

where Ij is the image of a given resolution and θj1 and bj1 re-
present the weights and biases of the first layer of this CNN
pipeline, respectively. The weights are composed of n1 ¼ 64
convolutions on each image patch, with each convolution filter
being of size 2 × 2. Therefore, this layer has 64 filters, each
of size 2 × 2. The bias vector is of size bji ∈ Rn1 . We keep
filter sizes small at this level, so as it extracts more fine grained
features from each patch. The σðxÞ function implements
a leaky ReLU function, which can be written as σðxÞ ¼
1ðx < 0ÞðαxÞ þ 1ðx >¼ 0ÞðxÞ, where α is a small constant.
This is followed by a sum pooling layer, to obtain a weighted
sum pool of features across various feature-maps of the previous
layer. The output of this layer is referred to as Yj

1.

7.2 Convolutional Layers

The feature extraction layer is followed by three additional
convolutional layers. We also refer to these as hidden layers,
denoted by Hj

i, which is the i’th hidden layer (i ∈ f2;3; 4g)
in the j’th CNN pipeline. The input to this layer is referred
to as Yj

i−1 and the output is denoted by Yj
i. The filter functions

in these intermediate layers can be written as

EQ-TARGET;temp:intralink-;sec7.2;326;281Yj
i ¼ σðθji × Yj

i−1 þ bji Þ i ∈ 2;3; 4; j ∈ 0;1; 2;

where θji and bji represent the weights and biases of each layer,
respectively. Each of the weights θji is composed of ni filters
of size ni−1 × fi × fi. n2 is set at 32 and ni ¼ ni−1

2
for i ∈ 3;4.

This progressive reduction in the number of filters leads to
computational benefits as observed in numerical experiments.
The filter sizes fi are set to f3;2; 1g for each of the three layers,
respectively, similar to hierarchical CNNs.

7.3 Subpixel Layer

In our CNN architecture, we leave the final upscaling of the
learned LR feature maps to match the size of the HR image,
to be done at the last layer of the CNN. This is implemented
as a subpixel layer similar to Ref. 74. The advantage of this
is that is that layers prior to the last layer operate on the reduced

Fig. 8 SNR as a function of training size.
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LR image rather than HR size, which reduce the computational
and memory complexity substantially.

The upscaling of the LR image to the size of the HR image is
implemented as a convolution with a filter θjsub whose stride is
1
r (r is the resolution ratio between the HR and LR images).
The size of the filter is denoted as fsub. A convolution with
stride of 1

r in the LR space with a filter θjsub (weight spacing 1
r)

would activate different parts of θjsub for the convolution.
The patterns are activated at periodic intervals of modða; rÞ
and modðb; rÞ where a, b are the pixel position in HR space.
This can be implemented as a filter θj5, whose size is
n4 × r2 × f5 × f5, given that f5 ¼ fsub

r and modðfsub; rÞ ¼ 0.
This can be written as

EQ-TARGET;temp:intralink-;e004;63;221Yj
5 ¼ γðθj5 × Yj

4 þ bj5Þ j ∈ 0;1; 2; (4)

where γ is periodic shuffling operator that rearranges r2 chan-
nels of the output to the size of the HR image.

8 Appendix B: Grading of Cancer TMAs
Here, we provide the individual grading results on the subset of
the pancreatic TMA cores graded by the pathologist. Note that
these results are representative of the results on a typical recon-
struction. For comparison purposes, our patholoist also graded
the LR images of the same TMAs. The results can be seen in
Table 7. The first column refers to the identifier for each cell.
To summarize the results, the overall structure of the pancreatic

tissue was reconstructed well enough so that normal and grade
one was easier to identify based on overall gland shapes.
Specifically, in case of grade one cancer, the stroma surrounding
the gland was identifiable too. However, it was observed that
differentiation between grade 2 and 3 was more difficult since
it requires visualization of infiltrating individual tumor cells.
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