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Abstract

Significance: Coherence, a fundamental property of waves and fields, plays a key role in
photoacoustic image reconstruction. Previously, techniques such as short-lag spatial coherence
(SLSC) and filtered delay, multiply, and sum (FDMAS) have utilized spatial coherence to
improve the reconstructed resolution and contrast with respect to delay-and-sum (DAS).
While SLSC uses spatial coherence directly as the imaging contrast, FDMAS employs spatial
coherence implicitly. Despite being more robust against noise, both techniques have their own
drawbacks: SLSC does not preserve a relative signal magnitude, and FDMAS shows a reduced
contrast-to-noise ratio.

Aim: To overcome these limitations, our aim is to develop a beamforming algorithm—
generalized spatial coherence (GSC)—that unifies SLSC and FDMAS into a single equation and
outperforms both beamformers.

Approach: We demonstrated the application of GSC in photoacoustic computed tomography
(PACT) through simulation and experiments and compared it to previous beamformers: DAS,
FDMAS, and SLSC.

Results: GSC outperforms the imaging metrics of previous state-of-the-art coherence-based
beamformers in both simulation and experiments.

Conclusions: GSC is an innovative reconstruction algorithm for PACT, which combines the
strengths of FDMAS and SLSC expanding PACT’s applications.
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1 Introduction

Photoacoustic tomography (PAT) is a fast-growing, hybrid biomedical imaging technique. The
combination of optical contrast and acoustic resolution endows PAT the capability to achieve
label-free, high-resolution, structural, and functional imaging up to several centimeters deep in
scattering media.1,2 In PAT, the sample is illuminated by a pulsed or intensity-modulated light
source. The endogenous tissue components such as hemoglobin or melanin absorb light, raise
their temperature a few millikelvin, and ultimately produce ultrasonic waves via thermal
expansion.3 Among all PAT implementations, photoacoustic computed tomography (PACT)
provides the most significant imaging depth and holds greatest promise for clinical translation.
In a typical PACT system, the signals emitted from the sample are simultaneously collected by
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an array of transducers positioned at different locations and geometries such as spherical,
circular, and linear.4,5 To reconstruct the image from these multi-sensor data, researchers
have developed a wide range of reconstruction algorithms: backprojection (delay and sum)6

time-reversal,7 f-k migration,8,9 adaptive minimum variance,10,11 and deep learning-based
approaches.12,13 However, these methods generally show suboptimal robustness to noise, which
can easily overwhelm signals stemming from deep tissue regions where the light fluence is low,
and the signals suffer from more substantial attenuation.

To abate noise, ultrasound imaging has long exploited spatial coherence by devising various
coherence factors, such as phase coherence and sign coherence,14 to weight the output of the
delay-and-sum (DAS) beamformer. As the side lobes and noises have low coherence, they can be
effectively weighted down by coherence factors, thereby improving imaging resolution and con-
trast. Owing to the similarity of ultrasound and PACT reconstruction, these coherence factors
have also been translated to PACT; despite that, a rigorous theory such as the van Cittert–Zernike
(VCZ) theorem in ultrasound imaging was not established for photoacoustic imaging until
recently.15 This is largely because the idea of exploiting spatial coherence between signals
recorded at different sensors to discriminate against random noises is general. The recent linkage
of the spatial coherence of photoacoustic signals to the VCZ theorem further solidifies its theo-
retical basis. Recently, instead of devising various coherence factors, better imaging perfor-
mances have been achieved by either modifying the DAS beamformer to incorporate spatial
coherence implicitly, as in filtered-delay-multiply and sum (FDMAS) beamformer,16,17 or more
unconventionally, using directly spatial coherence as the imaging contrast, as in short-lag spatial
coherence (SLSC).18 Both FDMAS and SLSC have enabled state-of-the-art image reconstruc-
tion with noisy data in ultrasound and photoacoustic imaging19–22 and have been further modi-
fied or combined with each other.23–28

Nevertheless, both beamformers still have drawbacks that limit their applicability. By comput-
ing normalized coherence values between the signals from different transducer elements as the
imaging contrast, SLSC discards the signal magnitude information, preventing quantitative imag-
ing such as oxygen saturation measurement in PACT. Unlike the SLSC beamformer, FDMAS
relies on spatial coherence more implicitly: it deviates from DAS by adding a multiplication step
between the delayed signals, which is essentially a correlation process that incorporates signal
coherence. F-DMAS bolsters the imaging contrast without losing the signal magnitude. Yet, it
suffers from a reduced contrast-to-noise ratio (CNR) for reasons that are not well understood.29

We present herein the generalized spatial coherence (GSC) beamformer, a novel reconstruc-
tion technique that offers state-of-the-art imaging contrast, CNR, and signal-to-noise ratio (SNR)
for PACT. The GSC beamformer unifies SLSC and FDMAS into the same mathematical equa-
tion and, as such, sheds new insights on F-DMAS and SLSC. As an example, we explained the
reason for the reduction of CNR in F-DMAS and the way that GSC rectifies it. The remainder of
the paper is structured as follows. We start by elaborating on the mathematical similarity between
F-DMAS and SLSC in Sec. 2.1, followed by detailed development that leads to the GSC beam-
former. Sections 2.2, 2.3, and 2.4 describe the imaging metrics and simulation and experimental
methods, respectively. Section 3 presents and discusses the results, and the conclusion is finally
drawn in Sec. 4.

2 Materials and Methods

2.1 Generalized Beamformer Equation

First, the delay, and sum equation yDAS is

EQ-TARGET;temp:intralink-;e001;116;153yDASðnÞ ¼
XN−1

i¼1

siðnÞ; (1)

where siðnÞ is the delayed PA signal from the i’th transducer element at the n’th sample.
Then, the delay, multiply, and sum beamformer equation, yDMAS adds a multiplication step
as a cross-correlator among different transducers:
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EQ-TARGET;temp:intralink-;e002;116;735yDMASðnÞ ¼
XN−1

i¼1

XN
j¼iþ1

sign½siðnÞsjðnÞ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jsiðnÞsjðnÞj

q
; (2)

where signðÞ is the signum function, and N is the number of elements in the transducer array.
To extract the second harmonic components from the multiplication step, we filter the signals
using a bandpass filter. We also rearrange terms in the summation by expressing signðÞ function
and absolute value operator implicitly and adding the filter. In other words, using

ffiffiffi
x

p ¼ xffiffi
x

p and

convolving the expression with the filter, we can rewrite Eq. (2) as

EQ-TARGET;temp:intralink-;e003;116;630yFDMASðnÞ ¼ h1ðnÞ �
XN−1

i¼1

XN
j¼iþ1

siðnÞsjðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2i ðnÞs2jðnÞ4

q ; (3)

where h1ðnÞ is the bandpass filter, and * denotes the convolution operation defined as

EQ-TARGET;temp:intralink-;e004;116;558½f � h�ðnÞ ¼
XL
τ¼−L

fðτÞhðτ − nÞ: (4)

For the SLSC beamformer, the normalized spatial coherence across the transducer array is
used as the imaging contrast. The normalized spatial coherence at lag m (number of separation
elements between the transducer elements) is defined as

EQ-TARGET;temp:intralink-;e005;116;468RðmÞ ¼ 1

N −m

XN−m

i¼1

Pn2
n¼n1 siðnÞsiþmðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn2

n¼n1 s
2
i ðnÞ

Pn2
n¼n1 s

2
iþmðnÞ

q : (5)

The kernel size, K ¼ n2 − n1, is usually selected at one wavelength to strike a balance
between the axial resolution and correlation stability.18 The SLSC beamformer sums RðmÞ
in the first M lags to reach a suitable tradeoff between the lateral resolution and SNR:

EQ-TARGET;temp:intralink-;e006;116;369RI ¼
XM
m¼1

RðmÞ: (6)

To make the similarity between FDMAS Eq. (2) and SLSC Eq. (5) more explicit, we further
rewrite Eq. (3) as

EQ-TARGET;temp:intralink-;e007;116;295yFDMASðnÞ ¼
XN−1

m¼1

XN−m

i¼1

h1ðnÞ � ½s 0i ðnÞs 0iþmðnÞ�; (7)

where s 0i ðnÞ ¼ siðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n1
n¼n1

s2i ðnÞ4

q . In other words, FDMAS adds all lags up to N − 1. Similarly,

we can re-express Eq. (6) as

EQ-TARGET;temp:intralink-;e008;116;204

RI ¼
XM
m¼1

1

N −m

XN−m

i¼1

Pn2
n¼n1 siðnÞsiþmðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn2

n¼n1 s
2
i ðnÞ

Pn2
n¼n1 s

2
iþmðnÞ

q

¼
XM
m¼1

1

N −m

XN−m

i¼1

Xn2
n¼n1

siðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn2
n¼n1 s

2
i ðnÞ

p siþmðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn2
n¼n1 s

2
iþmðnÞ

q

¼
XM
m¼1

1

N −m

XN−m

i¼1

Xn2
n¼n1

h2ðnÞ � ½s 0i ðnÞs 0iþmðnÞ�; (8)
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where s 0i ðnÞ ¼ siðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n2
n¼n1

s2i ðnÞ2

q and h2ðnÞ ¼ ½1; 1; : : : ; 1�, which describes a low-pass filter. The

resemblance of SLSC and FDMAS is now evident, and we can generalize them to a mathemati-
cal equation that encompasses both beamformers:

EQ-TARGET;temp:intralink-;e009;116;683yðnÞ ¼
XM
m¼1

wðmÞ
XN−m

i¼1

hðnÞ � fg½siðnÞ�g½siþmðnÞ�g; (9)

where wðmÞ represents a weight function, hðnÞ is a filter, and g½siðnÞ� is given as

EQ-TARGET;temp:intralink-;sec2.1;116;621g½siðnÞ� ¼

8>>>><
>>>>:

siðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n1
n¼n1

s2i ðnÞ4

q ; FDMAS

siðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n2
n¼n1

s2i ðnÞ2

q ; SLSC
:

Function g½siðnÞ� highlights two key differences between the two beamformers. First,
FDMAS preserves the signal magnitude by employing a weaker quasi-normalization through
fourth root. On the other hand, SLSC is more robust against noise using a larger kernel for
coherence evaluation, resulting in a better CNR. This implies that FDMAS’ inferior CNR is
due to the fact that it uses only one point in the kernel for computing coherence.30 To prove
the latter, we consider the PA signals received by a transducer element as a sum of signal
fiðnÞ and uncorrelated noise ϕiðnÞ: siðnÞ ¼ fiðnÞ þ ϕiðnÞ, with both being zero-mean. We also
assume the noises of different transducer elements are uncorrelated but have the same variance
σ2. It is worth noting that we only considered random system noises.31 Then,
EQ-TARGET;temp:intralink-;e010;116;430Xn2
n¼n1

s2i ðnÞ
Xn2
n¼n1

s2iþmðnÞ ≅
�Xn2
n¼n1

f2i ðnÞ þ
Xn2
n¼n1

σ2i ðnÞ
�
·

�Xn2
n¼n1

f2iþmðnÞ þ
Xn2
n¼n1

σ2iþmðnÞ
�

≅
�Xn2
n¼n1

½f2i ðnÞ þ σ2� þ
Xn2
n¼n1

φiðnÞ
�
·

�Xn2
n¼n1

½f2iþmðnÞ þ σ2� þ
Xn2
n¼n1

φiþmðnÞ
�
;

(10)

where
Pn2

n¼n1 ½fiðnÞσiðnÞ� ≅ 0 has been used since the noise is uncorrelated to the signal. ϕ2
i ðnÞ

is decomposed into its mean variance σ2 and a zero-mean component φiðnÞ, which causes the
coherence value to fluctuate even though the noise power σ2 remains the same. A larger kernel K
effectively reduces the effect of φiðnÞ relative to ½f2iþmðnÞ þ σ2� by a factor of

ffiffiffiffi
K

p
, leading to

a statistically more robust evaluation of spatial coherence in SLSC.32

The filter hðnÞ in Eq. (8) is utilized in FDMAS and SLSC differently. The FDMAS imple-
ments a bandpass filter that selects the second harmonic component. In contrast, SLSC uses an
integration-based low-pass filter. Theoretically, if the chosen kernel size is large enough so that
the PA signals inside the kernel are zero-mean, both filters would yield the same spatial coher-
ence. Otherwise, using the second harmonic components is likely to underestimate the coherence
because short kernels can prevent second harmonic components to fully develop as opposed to
the DC component; the kernel length must cover at least one period waveform of the transducer’s
center frequency. Nevertheless, the second harmonic component and hence the bandpass filter
can be advantageous in certain applications. For instance, in power Doppler Ultrasound, a higher
central frequency is typically desired,33 which, therefore, can benefit from the second harmonic
components that can be extracted by a bandpass filter in GSC/FDMAS.

Lastly, the weight function wðnÞ assigns scores to coherence at different lags. In SLSC,
shown in Eq. (6), the scores are assigned uniformly: the N −m transducer signal pairs’
coherence at lag m is divided by N −m. In contrast, F-DMAS sums the N −m pairs’ quasi-
normalization signals at lagmwithout dividing byN −m, which effectively assigns to the coher-
ence a weight of N −m, promoting the contributions from smaller lags m. As the coherence is
generally smaller at larger lags, coherences at larger lags contribute less to the overall imaging
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contrast. Therefore, a non-uniform weight function is beneficial for optimizing the imaging
contrast.24–26

Motivated by the considerations above, we present GSC beamformer equation:

EQ-TARGET;temp:intralink-;e011;116;699yGSCðnÞ ¼ wðnÞ
XM
m¼1

XN−m

i¼1

hðnÞ �
�

siðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn2
n¼n1 s

2
i ðnÞ4

p siþmðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn2
n¼n1 s

2
iþmðnÞ4

q
�
; (11)

where gðnÞ ¼ siðnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
n2
n¼n1

s2
i
ðnÞ4

q preserves signal magnitude, hðnÞ is a low-pass filter that extracts DC

components. The lags are limited to the first M values by selecting wðnÞ ¼ 1 for m < M and 0
otherwise to preferentially boost the contributions from small lags. By employing a non-uniform
weight function wðnÞ and a quasi-normalization function with finite kernel, the proposed GSC
beamformer goes beyond combining the merits of F-DMAS and SLSC: it not only preserves the
signal strength but also provides an even higher contrast and noise robustness than F-DMAS
and SLSC.

2.2 Imaging Metrics

Imaging performance is characterized by three different metrics: contrast (C), SNR, and
generalized CNR (gCNR), which are defined respectively as19

EQ-TARGET;temp:intralink-;e012;116;483C ¼ 20 log
Si
So

: (12)

EQ-TARGET;temp:intralink-;e013;116;427SNR ¼ 20 log
jSijffiffiffiffiffi
σ2o

p : (13)

EQ-TARGET;temp:intralink-;e014;116;390gCNR ¼ 1 −
XN−1
k¼0

minfhiðxkÞ; hoðxkÞg: (14)

Here, Si and So are the mean brightness values of the image inside and outside the target,
respectively, and σ2o refers to brightness variance outside the target, hi and ho are the associated
histograms inside and outside the target, respectively, and xk refers to the index of the bin with a
total of N bins. Shall be noted that gCNR is a relatively new imaging metric, which measures
lesion detectability within a range from 0 to 1, where 1 is maximum detectability.34,35 As
opposed to traditional CNR calculations, gCNR provides a more linear relationship between
imaging metrics and image quality.

2.3 Simulations

We first conducted a simulation study using the K-wave toolbox in MATLAB.36 The simulation
was initiated in a two-dimensional grid containing 512 × 512 points. Total grid size was
20 × 20 mm. To maintain a balance between numerical model stability and computational speed,
we define Courant–Friedrichs–Lewy (CFL) as CFL ¼ c0Δt∕Δx, where c0 is the speed of sound
in tissue (1500 m∕s), Δt is the time step, and Δx is the step size between the point grids, and
CFL ¼ 0.3. The simulated transducer has the same parameters as the custom transducer probe
used in experiments—a linear array with a central frequency at 2.5 MHz and an 80% fractional
bandwidth. The transducer parameters are shown in Table 1.

We performed four different simulations. First, to calculate the point spread function (PSF) of
the four considered beamformers (DAS, FDMAS, SLSC, and GSC), point sources are located at
10 mm away from the center of the array. To simulate the noise effect, we normalized the radio-
frequency data against the globally maximum signal amplitude across all channels, followed by
bandpass filtering the signal to simulate finite bandwidth of transducers and lastly adding white
noises. Second, we evaluated the beamformers’ capability in preserving the signal magnitude by
assigning three point sources separated by a few millimeters at the same depth with different
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absorption weights. Then, we confirmed the relationship between the selected lag in GSC beam-
forming and imaging metrics, and lateral resolution. Lastly, to compare the performance of these
beamformers in a realistic scenario, we reconstructed a vessel phantom at five different noise
levels.

2.4 Experiments

The experimental setup consists of a water tank with an opening partially sealed with a fluo-
rinated ethylene propylene (FEP) plastic film (McMASTER-Carr), used as an imaging window.
Pulse-echo measurements were used to verify that there was no acoustic attenuation through
50-μm-thick FEP film. Light transmission was found to be >97%. A 20-cm stroke translation
stage (McMASTER-Carr) mounted on an optical breadboard was used to ensure linear scanning.
The ultrasound transducer is a custom made, 128-element linear array with curved elements to
facilitate acoustic focusing without using a lens, with an element pitch of 0.67 mm and a central
frequency of 2.25 MHz (Imasonics, Inc.) connected to a Vantage 256 data acquisition system
(Verasonic, Inc.). A 10 nanosecond pulse Nd:YAG laser with 10-Hz pulse repetition rate at
1064-nm wavelength output (Continuum, SL III) was used as the excitation source. The laser
was coupled to one of the bifurcated line output fibers that has an input diameter of 1 cm and an
output length of 8 cm (Schott). Light delivery and acoustic detection were synchronized with
trigger output from the laser. A 3D printed holder was used to fix two dichroic mirrors
(TECHSPEC hot mirror and cold mirror, Edmund Optics Inc.), which were placed at 45-deg
angles to the transducer and fiber. The reflection through the hot mirror is 90% at 45-deg inci-
dence for 1064-nm light. The cold mirror transmits 97% for the same angle of incidence and
wavelength. The light illumination is co-planar with acoustic detection in this design.37–39

All human procedures were performed in compliance with the University at Buffalo IRB
protocol. All volunteers were enrolled after consent documents were signed. During imaging,
the palm was placed on the plastic film with ultrasound gel as the coupling medium (Parker
Laboratories, Inc.). The transducer-fiber bundle set (scan head) fixed in the 3D printed holder
was immersed into the water tank as shown in Fig. 1. Energy irradiated on the palm was mea-
sured as 21 mJ∕cm2, which is well below the ANSI safety limit of 100 mJ∕cm2 for 1064-nm

Fig. 1 A schematic drawing of the palm imaging setup.

Table 1 Transducer parameters.

Parameter Value

Number of elements 128

Pitch 0.67 mm

Sampling frequency 14.925 MHz

Center frequency 2.5 MHz

Fractional bandwidth 80%
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light.40 The palm was scanned linearly with a step size of 0.1-mm∕laser pulse. With this setup,
we have an imaging window of 20 cm × 10 cm.

3 Results

3.1 Simulation Results

Figures 2(a)–2(d) shows the PSFs of four different beamformers: DAS, SLSC, FDMAS, and
GSC, respectively. In SLSC and GSC reconstruction, theM lag was selected as 0.7 of the trans-
ducer aperture to strike a balance between the lateral resolution and other imaging metrics, and
the kernel size was set to one wavelength, these values’ selections will be further discussed. Such
PSFs represent the ideal case scenario where the sensor data has −40 dB noise amplitude.
Normalized lateral line profiles of the PSFs for each beamforming technique are shown in
Fig. 3(a). The lateral resolution was measured for each technique by calculating the full-width

Fig. 2 Point source noise-free reconstruction using (a) DAS; (b) SLSC; (c) FDMAS; (d) GSC.
Scale bar: 1 mm.

Fig. 3 Noise-free point reconstruction line profiles: (a) lateral line profile and (b) axial line profile.
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half maximum of line profiles with FDMAS being the lowest, 152 μm, followed by GSC,
158 μm, SLSC 181 μm, and DAS, 193 μm. GSC shows lowest side lobes. Figure 3(b) shows
normalized axial profile, where GSC shows highest contrast.

Figure 4 shows the PSF reconstructed with a −12 dB noise in sensor data. Overall, SLSC and
GSC show a similar lateral resolution values as in Fig. 2 and improved imaging performance
compared with DAS and FDMAS owing to their robustness to noise. Particularly, GSC shows
the highest contrast, 41.2 dB, and SNR, 41.8 dB, followed by SLSC with 40.6 and 40.6 dB,
FDMAS with 24.8 and 24.8 dB, and DAS 14.8 and 21.1 dB, respectively. Figures were nor-
malized for quantitative analysis. Although the image performance difference between SLSC
and GSC is just a few decibels, SLSC cannot preserve the relative signal magnitude. To illustrate
this fact, we reconstructed the three point sources with an absorption coefficient of 0.4, 0.8, and 1
using different beamformers in Fig. 5 and compared the line profiles of reconstructed absorption
coefficients from all beamformers, along with ground truth, in Fig. 6. The signal magnitude
difference between SLSC and other beamformers is notable: while other techniques manage
to recover the relative absorption magnitude, SLSC loses the signal magnitude due to its nor-
malization operation.

Figure 7 shows the GSC PSF reconstruction of the same point source simulated in Fig. 4 with
changing lag, from 10% to 90%, respectively. The lateral resolution is generally improved as the
lag increases. However, as shown in Table 2, imaging metrics do not follow the same relationship
with respect to lag. Both contrast and SNR reach highest values at 70% lag while lesion detect-
ability remains roughly constant. These results result in agreement with VCZ photoacoustic
theory stated in Ref. 15.15

To further compare the performance of all the considered beamformers, we simulated a vessel
phantom (Fig. 8) with five different noise levels. TheM lag was chosen as 30% of the transducer
aperture with the kernel size being one wavelength in SLSC and GSC. Figure 9 shows recon-
struction results at different noise levels: −20, −12, −10, −5 dB, and −1 dB from Figs. 9(a)–
9(e), respectively. Because the transducer’s geometry is linear, it suffers from a limited-view
problem: structures orthogonal to the transducer array cannot be well reconstructed. At
−20 dB noise in Fig. 9(a), all techniques yield accurate reconstruction of the vessel phantom.

Fig. 4 Point source reconstruction under −12 dB noise level using. (a) DAS; (b) SLSC;
(c) FDMAS; (d) GSC. Scale bar: 1 mm.
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Compared with DAS, the resolution improvement achieved by FDMAS, SLSC, and GSC fol-
lows the same relationship as in point source simulations, due to FDMAS’s central frequency
and SLSC and GSC’s noise robustness. At higher noise levels (−12 and −10 dB), the image
quality of all beamformers decreases, with DAS being more sensitive to noise and followed by
FDMAS. The reconstructed vessel is barely observable by DAS and FDMAS with −5-dB noise
level [Fig. 9(d)] while SLSC and GSC can still reconstruct it. Finally, at −1 dB noise level
[Fig. 9(e)], DAS and FDMAS cannot reconstruct the main features of the vessel, and SLSC
has reduced image quality compared to GSC. It is worth noting that at −10 and −5 dB noise

Fig. 6 Lateral profile of weighted point sources in Fig. 5 showing SLSC magnitude loss.

Fig. 5 Absorption reconstruction for point sources with different weights using (a) DAS; (b) SLSC;
(c) FDMAS; (d) GSC. Scale bar: 1 mm.
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levels, SLSC tends to make weaker regions to appear brighter in the image due to magnitude
information loss.

Figure 10 compares the reconstructed images from Fig. 9 quantitatively. In terms of contrast,
GSC and SLSC show an approximately same decreasing trend with increased noise levels,
whereas DAS and FDMAS exhibit a higher negative gradient as they are less robust to noise.
At the −10-dB noise level, the contrast in GSC is 4, 14, and 26 dB higher than those in SLSC,
FDMAS, and DAS, respectively. GSC achieved a consistently better contrast than DAS, SLSC,
and FDMAS at all noise levels.

Regarding the SNR, GSC consistently shows the highest value, whereas DAS and FDMAS
are less robust to noise. At lower noise levels (−20 and −15 dB), the differences between GSC
and SLSC, FDMAS, and DAS are 9, 3, and 17 dB, respectively. And at the highest noise level,
these differences are 5, 22, and 15 dB, respectively.

Table 2 GSC’s imaging metrics with different maximum lag.

Lag (%) C (dB) SNR (dB) gCNR (dB)

10 28.94 34.96 0.8

20 30.06 35.02 0.8

30 32.76 38.79 0.9

40 33.44 39.46 0.9

60 40.74 40.74 0.9

70 40.66 40.66 0.9

80 40.50 40.48 0.9

90 37.08 39.47 0.9

Fig. 7 GSC’s point source reconstruction with different maximum lags. Scale bar: 1 mm.
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The gCNR shows a similar dependence on noise as with contrast and SNR. All beamforming
techniques show between 0.8 and 0.9 detectability with a −20 dB noise level. At the second
noise level, we can see two groups clearly differentiate: on the one hand, GSC and SLSC, and
on the other hand, FDMAS and DAS. Again, noise robustness plays a key role. At −5 and
−2 dB, GSC shows the highest lesion detectability with values above 0.6 and 0.55, respectively,
followed by SLSC with 0.2 difference. At the highest noise level, DAS and FDMAS cannot
reconstruct the vessel with high fidelity, and their gCNR are 0.27 and 0.32, respectively.

It is worth noting that while GSC overperforms SLSC using the same parameters, the mag-
nitude difference in imaging metric from other beamformers depends on the selected parameters,
particularly M lag. Figure 11 shows SLSC and GSC’s contrast, SNR, and gCNR magnitude
variability as a function of lag for a −10 dB noise level in the vessel phantom reconstruction:
as the lag increases, there is an overall descending gradient, indicating the aforementioned trade-
off between imaging metrics and the lateral resolution.

3.2 Experimental Results

After 3D imaging experimental data acquisition, we performed 3D beamforming in a slice-by-
slice manner. Next, we took the maximum amplitude projection of the reconstructed 3D image
along the depth direction. For SLSC and GSC, Mlag was selected as 30% of the transducer
aperture, respectively, and the kernel size is one wavelength. The reconstruction results are
shown in Fig. 12. DAS palm’s reconstruction has a high background noise, and surprisingly,
SLSC has some noise artifacts that we believe are due to slicing during data acquisition. FDMAS
suffers from a reduced contrast to noise ratio, as observed previously. GSC shows the noticeable
improved image quality compared with other beamformers: it has the lowest background noise
and the highest contrast. In terms of the lateral resolution, FDMAS and GSC improve with
respect to DAS and SLSC. A line profile of an arbitrary vessel shown in Fig. 11 was taken
with ∼1.7 mm for FDMAS and GSC, and ∼2 mm in DAS. The resolution was not measured
in SLSC due to aforementioned artifacts.

We summarized the imaging metrics for experimental reconstructions in Table 3. GSC shows
an 8, 10, and 13 dB increase in contrast compared with FDMAS, DAS, and SLSC, respectively.
GSC also has the highest gCNR followed by FDMAS with 0.05 difference, DAS, and SLSC.
SLSC’s gCNR is dominated by the artifacts, which also make its SNR is the lowest. In terms of
SNR, GSC is at least 3 dB higher than all other beamformers. Overall, the experimental results
corroborate our simulation finding that GSC outperforms DAS, FDMAS, and SLSC in all im-
aging metrics.

Fig. 8 Ground truth consisting of vessel phantom. Scale bar: 1 mm.
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4 Discussion

As opposed to FDMAS, where the improved lateral resolution in FDMAS both simulated and
experimental results is attributed to its doubled central frequency of the signal, which halves the
wavelength, in GSC it is mainly due to noise robustness. Although, in this paper, GSC does not
utilize a bandpass filter, it could be also used to further improve the resolution in applications
where frequency is critical. Such case could be elasticity imaging, where the low-frequency
components worsen lateral resolution.41

As with SLSC, GSC’s lag selection is empirical. For instance, in cases where noise levels are
relatively low it would be desirable to maximize lag to improve lateral resolution other imaging
metrics should not be highly affected. However, in real case scenarios, noise levels are much

Fig. 9 Vessel phantom reconstruction at five different noise levels: (a) −20; (b) −12; (c) −10;
(d) −5; (e) −1 dB. The σ indicates noise standard deviation for each reconstruction. Scale bar:
1 mm.
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higher, especially in deeper tissue locations where light fluence is low and there is low acoustic
signal, the lag cannot be increased. Otherwise, imaging metrics will be considerably degraded.
Using relatively smallM lag values optimizes the imaging contrast, whereas largerM lag values
yield better lateral resolution because the effective aperture is increased. Regarding the kernel
selection, the rule of thumb is to select a value close to acoustic wavelength to strike a balance
between the axial resolution and correlation stability. Overall, GSC beamformer for PACT goes
beyond combining the strengths of FDMAS and SLSC. As in FDMAS, it preserves the signal
strength. Like SLSC, it is more robust to the noise using a finite kernel for coherence evaluation.
More importantly, it achieved high quality imaging performances in contrast, CNR and SNR.
GSC’s lateral resolution improvement difference remains depending on the filter choice and the
selected M lag.

Although there exist previous modifications and combinations of FDMAS and SLSC, GSC
combines the best from both original techniques. SLSC’s modifications include M-weighted

Fig. 10 Imaging metrics (a) Contrast; (b) SNR; (c) gCNR for different noise levels in Fig. 9.

Fig. 11 Contrast and SNR in SLSC and GSC with different maximum lag selection in vessel phan-
tom reconstruction.
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SLSC24 and locally weighted-SLSC25,26 with non-uniform weighting as in FDMAS but, as
opposed to GSC, the relative signal magnitude is not preserved preventing use in quantitative
applications. There have also been FDMAS modifications, such as in Ref. 27, where a coherence
factor has been implemented to increase resolution and SNR. However, in this technique, the
kernel is still minimum, affecting CNR. Combinations of both algorithms such as SL-FDMAS28

still have the same drawbacks as conventional SLSC. GSC is a more versatile and general algo-
rithm that can span more applications.

GSC has a similar computational cost as SLSC and higher than FDMAS and DAS. Since it
utilizes a finite kernel for computing coherence values rather than a single point as in FDMAS,
its computational cost is a few times higher depending on the kernel size. Hence, to achieve real-
time imaging using GSC, FDMAS, or SLSC, it is necessary to employ parallel beamforming
using a graphical processing unit (GPU).42 For a 512 × 512 reconstruction grid, our achieved
frame rate is ∼10 Hz using Nvidia RTX2080Ti GPU.

Table 3 Imaging metrics in experimental palm results.

Contrast (dB) SNR (dB) gCNR

DAS 8.94 25.2 0.73

SLSC 6.67 17.3 0.54

FDMAS 11.29 20.9 0.81

GSC 19.63 28.0 0.86

Fig. 12 Palm experimental reconstruction (a) DAS; (b) SLSC; (c) FDMAS; (d) GSC. Scalebar:
2 mm.
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To conclude, we mathematically generalized FDMAS and SLSC beamformers into a single
beamformer equation, the GSC. GSC goes beyond combining the merits of SLSC and FDMAS:
it preserves the signal strength and shows the high quality images for highly noisy measure-
ments. GSC’s enhanced performance is particularly useful for deep PACT that suffers from
higher noises due to a low light fluence.

Disclosures

The authors declare no conflicts of interest.

Acknowledgments

This work was supported in part by the U.S. Department of Health and Human Services under
Grant Nos. R35GM128761, R01EY029397, and R21EB028375.

References

1. J. Xia, J. Yao, and L. V. Wang, “Photoacoustic tomography: principles and advances,”
Electromagn. Waves 147, 1–22 (2014).

2. P. Beard, “Biomedical photoacoustic imaging,” Interface Focus 1(4), 602–631 (2011).
3. L. V. Wang and L. Gao, “Photoacoustic microscopy and computed tomography: from bench

to bedside,” Annu. Rev. Biomed. Eng. 16, 155–185 (2014).
4. D. Wang et al., “Coherent-weighted three-dimensional image reconstruction in linear-

array-based photoacoustic tomography,” Biomed. Opt. Express 7, 1957–1965 (2016).
5. M. Mozaffarzadeh et al., “Enhanced linear-array photoacoustic beamforming using modi-

fied coherence factor,” J. Biomed. Opt. 23(2), 026005 (2018).
6. M. Xu and L. V. Wang, “Universal back-projection algorithm for photoacoustic computed

tomography,” Phys. Rev. E 71, 016706 (2005).
7. D. Finch, M. Haltmeier, and Rakesh, “Inversion of spherical means and the wave equation

in even dimensions,” SIAM J. Appl. Math. 68, 392–412 (2007).
8. B. E. Treeby et al., “Modeling nonlinear ultrasound propagation in heterogeneous media

with power law absorption using a k-space pseudospectral method,” J. Acoust. Soc. Am.
131(6), 4324–4336 (2012).

9. B. E. Treeby, E. Zhang, and B. T. Cox, “Photoacoustic tomography in absorbing acoustic
media using time reversal,” Inverse Prob. 26(11), 115003 (2010).

10. S. Park et al., “Adaptive beamforming for photoacoustic imaging,” Opt. Lett. 33(12),
1291–1293 (2008).

11. M. Mozaffarzadeh et al., “Linear-array photoacoustic imaging using minimum variance-
based delay multiply and sum adaptive beamforming algorithm,” J. Biomed. Opt. 23(2),
026002 (2018).

12. D. Allman, A. Reiter, and M. A. L. Bell, “Photoacoustic source detection and reflection
artifact removal enabled by deep learning,” IEEE Trans. Med. Imaging 37(6), 1464–1477
(2018).

13. A. Hauptmann et al., “Model-based learning for accelerated, limited-view 3-D photoacous-
tic tomography,” IEEE Trans. Med. Imaging 37(6), 1382–1393 (2018)

14. J. Camacho, M. Parrilla, and C. Fritsch, “Phase coherence imaging,” IEEE Trans. Ultrason.
Ferroelectr. Freq. Control 56(5), 958–974 (2009).

15. M. T. Graham and M. A. L. Bell, “Photoacoustic spatial coherence theory and applications
to coherence-based image contrast and resolution,” IEEE Trans. Ultrason. Ferroelectr.
Freq. Control 67(10), 2069–2084 (2020).

16. G. Matrone et al., “The delay multiply and sum beamforming algorithm in ultrasound
B-mode medical imaging,” IEEE Trans. Med. Imaging 34(4), 940–949 (2015).

17. H. B. Lim et al., “Confocal microwave imaging for breast cancer detection: delay-multiply-
and sum image reconstruction algorithm,” IEEE Trans. Biomed. Eng. 55(6), 1697–1704
(2008).

Tordera Mora et al.: Generalized spatial coherence reconstruction for photoacoustic computed tomography

Journal of Biomedical Optics 046002-15 April 2021 • Vol. 26(4)

https://doi.org/10.2528/PIER14032303
https://doi.org/10.1098/rsfs.2011.0028
https://doi.org/10.1146/annurev-bioeng-071813-104553
https://doi.org/10.1364/BOE.7.001957
https://doi.org/10.1117/1.JBO.23.2.026005
https://doi.org/10.1103/PhysRevE.71.016706
https://doi.org/10.1137/070682137
https://doi.org/10.1121/1.4712021
https://doi.org/10.1088/0266-5611/26/11/115003
https://doi.org/10.1364/OL.33.001291
https://doi.org/10.1117/1.JBO.23.2.026002
https://doi.org/10.1109/TMI.2018.2829662
https://doi.org/10.1109/TMI.2018.2820382
https://doi.org/10.1109/TUFFC.2009.1128
https://doi.org/10.1109/TUFFC.2009.1128
https://doi.org/10.1109/TUFFC.2020.2999343
https://doi.org/10.1109/TUFFC.2020.2999343
https://doi.org/10.1109/TMI.2014.2371235
https://doi.org/10.1109/TBME.2008.919716


18. M. A. Lediju et al., “Short-lag spatial coherence of backscattered echoes: imaging character-
istics,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(7), 1377–1388 (2011).

19. M. A. Lediju et al., “Short-lag spatial coherence beamforming of photoacoustic images for
enhanced visualization of prostate brachytherapy seeds,” Biomed. Opt. Express 4(10),
1964–1967 (2013).

20. Y. Li et al., “Image enhancement of photoacoustic imaging for early endometrial cancer
detection by employing a filtered delay multiply and sum beamforming algorithm,” AIP
Adv. 9, 125303 (2019).

21. M. A. L. Bell et al., “In vivo visualization of prostate brachytherapy seeds with photoacous-
tic imaging,” J. Biomed. Opt. 19(12), 126011 (2014).

22. S. R. M. Rostami et al., “OpenACC GPU implementation of double-stage delay-multiply-
and-sum algorithm: toward enhanced real-time linear-array photoacoustic tomography,”
Proc. SPIE 10878, 108785C (2019).

23. B. Pourebrahimi et al., “Improving the quality of photoacoustic images using the short-lag
spatial coherence imaging technique,” Proc. SPIE 8581, 85813Y (2013).

24. A. A. Nair, T. D. Tran, and M. A. L. Bell, “Robust short-lag spatial coherence imaging,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control 65(3), 366–377 (2018).

25. E. Gonzalez and M. A. L. Bell, “Segmenting bone structures in ultrasound images
with locally weighted SLSC (LW-SLSC) beamforming,” in IEEE Int. Ultrason. Symp.,
pp. 1–9 (2018).

26. E. Gonzalez, A. Wiacek, and M. A. L. Bell, “Visualization of custom drill bit tips in a human
vertebra for photoacoustic-guided spinal fusion surgeries,” Proc. SPIE 10878, 108785M
(2019).

27. S. Jeon et al., “Real-time delay-multiply-and-sum beamforming with coherence factor
for in vivo clinical photoacoustic imaging of humans,” Photoacoustics 15, 100136
(2019).

28. G. Matrone and A. Ramalli, “Spatial coherence of backscattered signals in multi-line
transmit ultrasound imaging and its effect on short-lag filtered-delay multiply and sum
beamforming,” Appl. Sci. 8(4), 486 (2018).

29. G. Matrone et al., “High frame-rate, high resolution ultrasound imaging with multi-line
transmission and filtered-delay multiply and sum beamforming,” IEEE Trans. Med.
Imaging 36(2), 478–486 (2017).

30. D. Hyun, A. L. C. Crowley, and J. J. Dahl, “Efficient strategies for estimating the spatial
coherence of backscatter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 64(3), 500–
513 (2017).

31. B. Stephanian et al., “Additive noise models for photoacoustic spatial coherence theory,”
Biomed. Opt. Express 9(11), 5566–5582 (2018).

32. L. Wasserman, All of Statistics: A Concise Course in Statistical Inference, Springer Science,
Berlin/Heidelberg, Germany (2013).

33. U. M. Hamper et al., “Power Doppler imaging: clinical experience and correlation
with color Doppler US and other imaging modalities,” Radiographics 17(2), 499–513
(1997).

34. A. Rodriguez-Molares et al., “The generalized contrast-to-noise ratio: a formal definition for
lesion detectability,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(4), 745–759
(2020).

35. K. M. Kempski et al., “Application of the generalized contrast-to-noise ratio to assess photo-
acoustic image quality,” Biomed. Opt. Express 11(7), 3684–3698 (2020).

36. B. E. Treeby and B. T. Cox, “k-wave: MATLAB toolbox for the simulation and reconstruc-
tion of photoacoustic wave fields,” J. Biomed. Opt. 15(2), 021314 (2010).

37. Y. Wang et al., “Optimizing the light delivery of linear-array-based photoacoustic systems
by double acoustic reflectors,” Sci. Rep. 8(1), 13004 (2018).

38. N. Nyayapathi et al., “Dual scan mammoscope (DSM)—a new portable photoacoustic
breast imaging system with scanning in craniocaudal plane,” IEEE Trans. Biomed. Eng.
67(5), 1321–1327 (2020).

39. Y. Wang et al., “Review of methods to improve the performance of linear array-based photo-
acoustic tomography,” J. Innovative Opt. Health Sci. 13(2), 2030003 (2020).

Tordera Mora et al.: Generalized spatial coherence reconstruction for photoacoustic computed tomography

Journal of Biomedical Optics 046002-16 April 2021 • Vol. 26(4)

https://doi.org/10.1109/TUFFC.2011.1957
https://doi.org/10.1364/BOE.4.001964
https://doi.org/10.1063/1.5122891
https://doi.org/10.1063/1.5122891
https://doi.org/10.1117/1.JBO.19.12.126011
https://doi.org/10.1117/12.2511115
https://doi.org/10.1117/12.2005061
https://doi.org/10.1109/TUFFC.2017.2780084
https://doi.org/10.1109/ULTSYM.2018.8579732
https://doi.org/10.1117/12.2510688
https://doi.org/10.1016/j.pacs.2019.100136
https://doi.org/10.3390/app8040486
https://doi.org/10.1109/TMI.2016.2615069
https://doi.org/10.1109/TMI.2016.2615069
https://doi.org/10.1109/TUFFC.2016.2634004
https://doi.org/10.1364/BOE.9.005566
https://doi.org/10.1148/radiographics.17.2.9084086
https://doi.org/10.1109/TUFFC.2019.2956855
https://doi.org/10.1364/BOE.391026
https://doi.org/10.1117/1.3360308
https://doi.org/10.1038/s41598-018-31430-5
https://doi.org/10.1109/TBME.2019.2936088
https://doi.org/10.1142/S1793545820300037


40. A. N. S. Institute and L. I. America, “American National Standard for safe use of lasers,”
Laser Institute of America (2007).

41. M. S. Singh and A. Thomas, “Photoacoustic elastography imaging: a review,” J. Biomed.
Opt. 24(4), 040902 (2019).

42. E. A. Gonzalez and M. A. Bell, “LGPU implementation of photoacoustic short-lag spatial
coherence imaging for improved image-guided interventions,” J. Biomed. Opt. 25(7),
077002 (2020).

Biographies of the authors are not available.

Tordera Mora et al.: Generalized spatial coherence reconstruction for photoacoustic computed tomography

Journal of Biomedical Optics 046002-17 April 2021 • Vol. 26(4)

https://doi.org/10.1117/1.JBO.24.4.040902
https://doi.org/10.1117/1.JBO.24.4.040902
https://doi.org/10.1117/1.JBO.25.7.077002

