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Abstract

Significance: Developing algorithms for estimating blood oxygenation from snapshot multi-
spectral imaging (MSI) data is challenging due to the complexity of sensor characteristics and
photon transport modeling in tissue. We circumvent this using a method where artificial neural
networks (ANNs) are trained on in vivo MSI data with target values from a point-measuring
reference method.

Aim: To develop and evaluate a methodology where a snapshot filter mosaic camera is utilized
for imaging skin hemoglobin oxygen saturation (SO2

), using ANNs.

Approach: MSI data were acquired during occlusion provocations. ANNs were trained to esti-
mate SO2

with MSI data as input, targeting data from a validated probe-based reference system.
Performance of ANNs with different properties and training data sets was compared.

Results: The method enables spatially resolved estimation of skin tissue SO2
. Results are com-

parable to those acquired using a Monte-Carlo-based approach when relevant training data
are used.

Conclusions: Training an ANN on in vivo MSI data covering a wide range of target values
acquired during an occlusion protocol enable real-time estimation of SO2

maps. Data from the
probe-based reference system can be used as target despite differences in sampling depth and
measurement position.
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1 Introduction

Skin microcirculation is noninvasively accessible using optical instrumentation, and its physio-
logically related parameters, such as hemoglobin oxygen saturation (SO2

), red blood cell (RBC)
tissue fraction, and melanin content can be monitored using diffuse reflectance spectroscopy
(DRS).1 Most DRS systems consist of a broadband light source and a spectrally resolving detec-
tor, although spectral resolution can also be achieved by sweeping or tuning the light source
emission spectra. For fiber-based systems, the source–detector distance is small, typically in
the mm range, causing detected photons to traverse sub-mm to single mm in tissue depth depend-
ing on the wavelength range. For imaging systems, a slightly larger sampling depth can be
assumed in the visible wavelength range.2 Regardless of modality, the detected backscattered
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light intensity is affected by tissue scattering and absorption optical properties. This effect is
wavelength dependent and, hence, DRS contains information about concentrations of biological
chromophores3,4 dominated by oxy- and deoxyhemoglobin, melanin, and bilirubin. Analyzing
the backscattered diffuse spectra, DRS can estimate microcirculatory physiological parameters
such as SO2

without having to assess intensity variations associated with arterial blood pulsa-
tions, as is done in pulse oximetry.1

Until recently, many DRS systems were fiber-based and limited to pointwise measurements.
Recent advancements in multispectral imaging (MSI) technology have created possibilities to
register spatially resolved images, where each pixel is spectrally resolved, a so-called data cube.
This can be acquired either by sweeping the light source and/or detector over an imaged area,
collecting one row of spectral data at a time, or by sweeping through the spectral dimension
using optical filters.5 These methods are limited by sweep time when it comes to studying rapidly
changing events. There are snapshot systems capable of instantaneous capture of a whole spec-
tral data cube using on-chip optical filters placed in a repeating mosaic pattern. These systems
overcome the temporal limitation but introduce new challenges due to a limited spectral reso-
lution with complex filter characteristics.6

Measured DRS spectra reflect changes in both absorption and scattering and are often
analyzed by fitting to an analytical or numerical model of skin diffuse reflectance to assess
the microcirculatory status of skin tissue.7 Solving the inverse problem involves iterative
updates of model parameters until measured and modeled spectra agree. Diffusion theory
(DT) is an approximation valid for simplified geometries and some other assumptions.
This theory allows for analytical calculation of DRS spectra given the optical and geomet-
rical properties of the measurement set-up.8–12 A more generally applicable model that is
considered the golden standard is Monte Carlo (MC) simulations of light transport.13–18

With MC, statistical sampling of millions or billions of photon trajectories is performed until
a desired accuracy is obtained. Different methods have been proposed to accelerate MC sim-
ulations,19 some employing graphics processing units (GPUs). Recently, a real-time analysis
using inverse MC for pointwise measurements has been achieved, calculating 2 to 10 sets of
microcirculation parameters per second on a lap-top with a built-in GPU.20 For imaging
applications, where the amount of data vastly surpasses that of a pointwise technique,
processing is much more demanding.2

To avoid computationally demanding search algorithms, some research groups have applied
machine learning approaches to directly extract tissue properties.14,21,22 The use of an artificial
neural network (ANN) for determining optical properties was first reported by Farrell et al.,
where the algorithm was trained using DT.21 Later Farrell et al. evaluated ANNs on phantom
and in vivo data.23 Since then, ANNs have demonstrated in several publications to accurately
estimate the optical properties21,24–26 and SO2

.20,27 The computational efficiency of machine
learning algorithms makes them well suited for real-time imaging applications, where the cal-
culation load can be exactly determined by the number of inputs and number of nodes in
the ANN.

Relevant and representative training data is of outmost importance when using ANNs. It
must cover the full range of optical properties, types of tissues, measurement sites, etc., that
may be targeted by the application. Training data may be generated using forward MC sim-
ulations when determining optical properties from reflectance measurements25,28,29 or chromo-
phore concentrations directly.20,27 This approach requires an accurate model of the system
properties such as spectral sensitivity, noise, and possible drift as well as a model of light
propagation in tissue, and the measurement setup (skin type, location, etc.). Training data for
snapshot imaging sensors must take the complex characteristics of the filter mosaic into
account. However, we know from experience that it is difficult to determine the filter character-
istics with such accuracy that reliable training data can be produced from MC simulations.2

Another approach, which to our knowledge has not previously been applied, is to train the
algorithm using in vivo data that was coregistered with a validated reference system. This
eliminates the need for a calibration procedure to handle the hardware characteristics and
extensive light transport theory modeling.

The aim of this study was to develop and evaluate a methodology using a fast ANN method
trained on in vivo data to estimate skin SO2

images from data captured by a snapshot MSI
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camera. The target data were concurrently measured by a validated point-measuring optical spec-
troscopy system. Measurements were continuously performed on healthy subjects during arterial
and venous occlusion and release provocations, to capture SO2

values covering almost the com-
plete 0% to 100% range. As a first proof-of-principle, this study is conducted in a population
with a limited range of skin tones, focusing on demonstrating how variations in forearm skin SO2

can be imaged.

2 Materials and Methods

The experimental setup and data acquisition were previously described in Ewerlöf et al. 201730

and 20212 and are summarized in the following sections. In this paper, the model used for analy-
sis of MSI data is changed from inverse Monte Carlo to ANNs.

2.1 Equipment

Diffuse reflectance data were acquired by a snapshot MSI camera (xiSpec MQ0022HG-IM-
SM4X4-VIS, XIMEA®, Germany) containing a Fabry–Perot interference filter array (4 × 4 pixels)
arranged in a recurring mosaic pattern. The 16 different filters have complex spectral sensitivities in
the wavelength range 450 to 650 nm and have substantial spectral overlap. The mosaic filter array
was positioned on top of the CMOS sensor (2048 × 1088 pixels), optically aligned to the CMOS
sensor pixels. The camera was equipped with a 16-mm lens (C Series VIS-NIR Lens, Edmund
Optics Inc., Barrington) and mounted side-by-side to an 8 LED ring light (R130, Smart Vision
Lights) emitting light in the range 390 to 765 nm. A crossed polarizer/analyzer pair was placed in
front of the light source (polarizer) and the detecting MSI camera (analyzer) to avoid specular
reflections. Data were collected by the MSI system using MATLAB (MATLAB version 8.2.0,
2013b, computer software, The MathWorks Inc., Natick, Massachusetts). Sixteen consecutive
snapshots, each with exposure time 20 ms, were acquired from the MSI system and summed
to reduce noise and amount of data, resulting in an effective framerate of 1.4 frames per second.
A PF-6000 EPOS instrument (Perimed AB, Järfälla, Sweden) was used as reference system.1

The probe-based method measures diffuse reflectance spectra at two source–detector fiber sepa-
rations (0.4- and 1.2-mm center–center separation) in the wavelength interval 450 to 850 nmwith a
framerate of 1 Hz. Spectra were analyzed using an inverseMonte Carlo algorithm based on a three-
layered tissue model that has been shown to assess absolute values of SO2

(%) to within 5% root-
mean-square (RMS) deviation.31 The light source of the EPOS system was an AvaLight-HAL-S
(Avantes, Apeldorn, The Netherlands) for the first 11 subjects and was changed to an AvaLight-
HAL-S-Mini for the remaining 13 subjects. The arm cuff used for occlusion was controlled by the
EPOS system.

2.2 Measurement Protocols

Two separate occlusions (arterial and venous occlusion) were performed on 24 healthy subjects
with a previously described protocol.2 Measurements were performed in seated position with
one arm resting on a vacuum pillow (Germa Protec, AB Germa, Kristianstad, Sweden) for sup-
port and fixation. Left or right arm was chosen randomly and both protocols were performed on
the same arm, starting with arterial occlusion. An arm cuff was placed around the upper arm and
the subject was acclimatized in the room (24°C to 26°C room temperature) for 15 min before
measurements started. For spatial reference in the region imaged by the MSI camera 3 × 3 ink
dots were painted on the skin to mark, the corners of a quadrant of four 2 × 2 cm regions of
interest (ROIs). The MSI camera was positioned 30 cm above the surface of the arm. The EPOS
probe was applied to the skin using double-adhesive tape avoiding visible vessels, positioned
distally and close to the area marked by the ink dots. The probe was repositioned between
provocations.

For the arterial occlusion protocol, the subject’s forearm was completely occluded (arterial
occlusion) by inflating the arm cuff to 250 mmHg for 5 min followed by a rapid release of
pressure, causing reactive hyperemia reperfusion of the lower arm tissue. After a resting period
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of at least 45 min, the arm cuff was inflated once more, this time to 45 mmHg, causing a 5-min
venous occlusion of the same arm. The venous occlusion was followed by a rapid release of
pressure, again causing reperfusion of the lower arm tissue. Data were acquired for 5 min before
occlusion (baseline), 5 min during occlusion, and for 10 min after release (reperfusion) for
both protocols.

2.3 Study Subjects

Measurements were performed on 24 healthy subjects and data from 20 of those were included
in this study (10 women and 10 men, aged 21 to 39 years). They all had skin type I to III, self-
reported using Fitzpatrick skin typing test.32 Exclusion criteria were known skin conditions or
circulatory diseases, use of medication affecting the circulatory system and smoking. Extensive
physical activity was not allowed for 24 h and coffee for 4 h prior to measurements. Written
informed consent was obtained from all participants. The study was approved by the Regional
Ethical Review Board in Linköping (D. No. 2015/392-31).

2.4 Data Exclusion

Data from four subjects were excluded due to exclusion criteria (one subject had coffee prior to
the measurements and one had a skin condition), nonadherence to the study protocol (one sub-
ject) and poor EPOS signal (one person). For the remaining subjects, data collected when the
light source was turned off during dark measurements were excluded, as well as data from a few
erroneous EPOS registrations.

2.5 Data Preprocessing

Each 2048 × 1088-pixel image from the MSI camera contains intensity data shaped by the 16
unique bandpass filters overlaid on the sensor. Before further analysis, these raw images were
dark-corrected by subtracting a dark raw image acquired interleaved during each measurement
series. A multispectral data cube was then reconstructed using a weighted bilinear interpolation
demosaicing algorithm33,34 followed by spatial binning of 4 × 4 pixels for each wavelength
band. This resulted in a multispectral data cube with an effective resolution of 512 × 272 pixels

for each of the 16 wavelength bands. Finally, the data cubes where white normalized using a
multispectral data cube collected from a white reference Spectralon® tile (Labsphere, Inc., North
Sutton, New Hampshire). The acquisition of dark raw images and white calibration raw images
is further described in Ref. 2.

2.6 Selection of Data

A 9-min time interval (from 1 min before occlusion until 3 min after release) covering the full
dynamic range of SO2

values was selected for all subjects, involving about 760 acquired MSI
data cubes each for arterial and venous occlusion. The location of the four ROIs was con-
tinuously tracked for spatial reference during each measurement, as described in Sec. 2.5 in
Ref. 2. Each pixel of the acquired data cube provided MSI intensities from 16 channels
forming the spectrum used as training data. Each spectrum was normalized to its mean inten-
sity. To increase the amount of training data and to minimize spatial dependencies, spectral
data from 10 pixels in each data cube were randomly chosen from one ROI near the EPOS
probe. This resulted in about 7600 × 2 ¼ 15;200 spectra acquired from the two occlusions for
each subject. When comparing results to the previously reported inverse Monte Carlo algo-
rithm,2 the mean spectrum over the 2 × 2 cm ROI was used. For imaging purposes, the whole
area of interest (the lower arm) was masked out from the background and each pixel analyzed
separately.

The target SO2
values measured by the EPOS reference system (SO2;EPOS) during arterial and

venous occlusion were unevenly distributed, as shown in Fig. 1. By including both provocations,
a more even distribution between 0% and 100% was achieved.
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2.7 Training of ANNs

Training of shallow ANNs (one hidden layer) was performed using the deep learning toolbox
in MATLAB (MATLAB version 9.10.0, R2021a). ANNs were trained with MSI data (inten-
sities from 16 wavelength bands) as input, using SO2;EPOS as target. Each ANN was initialized
using the function fitnet where the number of hidden layers was stated, and the network train-
ing function set to Levenberg–Marquardt backpropagation using mean-square-error loss func-
tion. The hyperbolic tangent function was used as activation function of the nodes in the
hidden layer. Using default settings, the input data for training were divided into training data
(70%), validation data (15%), and test data (15%). The ANNs were trained with the MATLAB
function train using parallel computing. Training parameters were set to default values. Before
repeating the training, the ANN was re-initialized with new weight and bias values to avoid
similar starting set-ups.

For the ANN training and evaluation, the principle of leave-one-subject-out cross-vali-
dation35 was applied, i.e., data from all subjects except one were used for training, validation,
and testing. Untouched and independent data from the left-out subject were then used for the
final evaluation of the ANN. A set contained about 19 × 15;200 ¼ 288;800 spectra used for
training, validation, and testing, while 15,200 unused spectra were used for the final evalu-
ation. This procedure was repeated 20 times until all subjects had been used in the final
evaluation. For each left-out subject, training was repeated 10 times with different starting
parameters for each set of training data and for nine different sizes of the hidden layer (1, 2,
3, 4, 5, 7, 10, 15, and 20 nodes) resulting in 90 trained ANNs. The concurrently measured
SO2;EPOS was used as target for each spectrum. A summary of the training procedure is shown
in Fig. 2.

The target SO2;EPOS values of the training data were unevenly distributed in the interval 0% to
100%, as shown in Fig. 1. To account for this, error weights were calculated and used for training
and evaluation. For the entire data set (data from all 20 subjects), the number of targets were
binned in their respective 10% interval. Error weights were calculated as 1/number of targets in
each bin and normalized to a number between 0 and 1. The resulting array, W, containing a
weight for each of the 10% bins, was applied to the data sets to level out the impact of data
from the respective bin.

To investigate the importance of including data with a full span of SO2
target values, train-

ing was performed without using data from arterial occlusion. This training was performed
using the same W as described above. The trained ANNs were evaluated for data from arterial
occlusion protocols including both lower and higher SO2

values than those included in the
training data set.

Fig. 1 The combined distribution of SO2 ;EPOS values used as targets for training ANNs (all 20 sub-
jects). Light blue bars show values acquired during arterial occlusion and dark blue represent
values acquired during venous occlusion.
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2.8 Evaluation of ANN Results

The performance of a trained ANN was represented by a weighted RMS error, Erms;W, between
target values from the EPOS system, SO2;EPOS, and values estimated by ANN, SO2;ANN, calculated
according to Eq. (1). WEPOS was a vector containing the corresponding weight from W for each
target value:

EQ-TARGET;temp:intralink-;e001;116;385Erms;W ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

WEPOS · ðSO2;EPOS − SO2;ANNÞ2P
WEPOS

s
: (1)

ANNs chosen for each set of training data were applied to the 20 evaluation data sets containing
data from arterial occlusion and to averaged data over a 2 × 2 cm ROI analyzed by the inverse
MC algorithm presented in Ref. 2. To illustrate application of the ANN method for imaging,
spatially resolved SO2

images, where a trained ANN was applied to spectral data from individual
pixels, were also calculated for three points of time (during baseline, at end of occlusion, and
during reperfusion).

2.9 Statistics

Bland–Altman analysis36 was performed on the results to compare ANN results to target EPOS
values. The analysis was performed for three time intervals: baseline (from 60 s before until 5 s
before occlusion starts), end of occlusion (from 60 s before until 10 s before occlusion ends), and
early after release (from 5 s before until 55 s after release). For the first two intervals, mean values
were calculated for ANN and EPOS methods, respectively. During release the increase in SO2

is
distinct. Since we wanted to capture the peak during release, we chose to use the median of nine
samples around the peak EPOS value in the chosen interval. Mean bias was calculated, and upper
and lower limits set to mean �1.96 standard deviations (SD).

3 Results

The performance of the trained ANNs during both training (a) and evaluation (b) for the 20
different data sets is shown in Fig. 3. For training, all data sets show a conformance in

Fig. 2 An overview of the experiment set-up andmain steps of training and evaluation procedures.
Each training data set consisted of data from 19 out of 20 subjects. Data from the left-out subject,
iteratively chosen, were used for evaluation.
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Erms;W, while it varies more when the trained ANNs are applied to unknown evaluation data. The
number of nodes only had a minor influence on Erms;W. Mean Erms;W over all 20 evaluation data
sets showed a lowest value for three nodes (9.5%). The variation in performance between 10
repeated trainings (shown as error bars) lies within 0.1% when calculated for data used during
training and 0.7% for evaluation data. Therefore, the following results use only the first repetition
of ANNs trained using three nodes in the hidden layer.

The time-resolved SO2;ANN for the evaluation data set with median Erms;W (9.1%) is shown in
Fig. 4(a) together with corresponding SO2;EPOS. Bland–Altman analysis was performed for the 20
evaluation data sets analyzed with their respective trained ANN at three time intervals indicated
by gray in Fig. 4(a). The result is shown in Fig. 4(b). ANNs give results similar to EPOS values
in baseline with mean bias 0.08% with upper and lower limits of 17.4% and −17.3% deviation
and at reperfusion with mean bias 0.7% with upper and lower limits of −7.8% and −6.4%
deviation. Results at end of occlusion show a larger difference with mean bias −5.3% with upper
and lower limits of −0.2% and −10.3% deviation, respectively.

(a) (b)

Fig. 4 (a) Typical individual SO2;ANN (red) and corresponding SO2 ;EPOS (black) during arterial occlu-
sion. Vertical lines indicate start and end off occlusion. Time intervals used for Bland–Altman
analysis are marked in gray for baseline (0 to 55 s), end of occlusion (300 to 350 s), and reper-
fusion (355 to 410 s). (b) Agreement between SO2;ANN and SO2 ;EPOS as a Bland–Altman analysis of
20 subjects at baseline (squares/dashed lines), end of occlusion (circles/solid lines), and reper-
fusion (triangles/dash-dotted lines). The mean difference for each phase is represented by thin
lines and the difference �1.96 � SD (95% prediction interval) by bold lines. Symbols filled with red
represent data from the dataset in (a).

(a) (b)

Fig. 3 Calculated E rms;W for ANNs trained with varying number of hidden nodes and applied to
(a) the test data and (b) the leave-one-subject-out evaluation data, respectively. Each line rep-
resents the average ANN performance for 10 repetitions of training. Error bars show SD.
Black dash-dotted line indicates the mean E rms;W over all data sets for each node size,
respectively.

Ewerlöf et al.: Multispectral snapshot imaging of skin microcirculatory hemoglobin oxygen saturation. . .

Journal of Biomedical Optics 036004-7 March 2022 • Vol. 27(3)



The ANNs were applied to the same MSI data analyzed by inverse MC in Ref. 2. The time-
resolved result for a representative data set is shown in Fig. 5(a) and compared to the inverse MC
result, SO2;invMC, and SO2;EPOS target data. In this case, the ANN method, compared to the inverse
MC algorithm, gives a result closer to EPOS reference values in baseline and an even better
match at reperfusion. At end of occlusion, the inverse MC algorithm is closer to EPOS. The
Bland–Altman analysis comparing the inverse MC algorithm to ANN results for the 20 sets
of ROI data in Fig. 5(b) shows higher values for the latter in all time intervals on average.
The mean bias is −13.5% with upper and lower limits of −4.2% and −23.0% deviation in base-
line, −5.1% with upper and lower limits of −1.0% and −9.2% deviation at end of occlusion, and
−5.3% with upper and lower limits of 4.2% and −14.9% deviation for reperfusion.

Results from training including only data from venous occlusion, SO2;ANN;venOccl, is shown in
Fig. 6(a) for a representative evaluation data set and clearly show the restricted ANN’s diffi-
culties to estimate both low and high target SO2;EPOS values. Bland–Altman analysis in
Fig. 6(b) confirms the observation. The mean bias in baseline is −4.0% with upper and lower
limits of 15.1% and −23.1% deviation. At end of occlusion, the mean bias is −24.3% with upper
and lower limits of −7.4% and −41.1% deviation and results at reperfusion show a mean bias of
13.1% with upper and lower limits of 23.7% and 2.5% deviation, respectively.

Table 1 presents the average SO2
for the three time intervals indicated by gray in Fig. 4(a) seen

over all 20 evaluation data sets when estimated by EPOS, ANNs applied on evaluation data,
ANNs and inverse MC algorithm applied on ROI data, and the ANNs trained on venous occlu-
sion data applied on data from arterial occlusion.

Our proposed and trained ANN was applied pixelwise to three intensity data cubes, resulting
in SO2;ANN maps from three temporal points (during baseline, end of occlusion, and reperfusion)
for arterial occlusion. The results are shown in Figs. 7(a)–7(c) together with the corresponding
SO2;invMC maps (d)–(f). Both algorithms show distinct differences for the three time points with
SO2

values around 50% during baseline, close to 0% at end of occlusion and values between
90% and 100% for reperfusion. The computational time for an image (512 × 270 pixels) using a
three node ANN was 0.056 s. For comparison, a 10 node ANN spent 0.066 s and an ANN with
20 nodes 0.082 s for the same image. The inverse MC algorithm took on average 0.051 s per
pixel which adds up to 1 h 58 min for a 512 × 270-pixel image. Computations for both methods
were performed by a stationary computer with an Intel® Xeon® CPU E5-1620 processor and
16 GB RAM.

(a) (b)

Fig. 5 (a) The SO2
during arterial occlusion estimated by the inverse MC algorithm in Ref. 2

(SO2;invMC, blue), by ANN (SO2 ;ANN, red) as well as corresponding reference value (SO2 ;EPOS,
black). Vertical lines indicate start and end off occlusion. Time intervals used for Bland–Altman
analysis are marked in gray for baseline (0 to 55 s), end of occlusion (300 to 350 s), and reper-
fusion (355 to 410 s). (b) Agreement between SO2;ANN and SO2 ;invMC for the 20 subjects at baseline
(squares/dashed lines), end of occlusion (circles/solid lines), and reperfusion (triangles/dash-
dotted lines). The mean difference for each phase is represented by thin lines and the difference
�1.96 × SD (95% prediction interval) by bold lines. Symbols filled with red represent data from the
data set in (a).
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4 Discussion

In this study, we investigated if data acquired in vivo from healthy subjects can be used for
training ANNs that reliably estimate SO2

images from MSI data. Target data were SO2
values

from a validated point measuring EPOS system. Evaluation with independent MSI data not
included in the training data set, i.e., data from the left-out subject, showed excellent conform-
ance between ANN estimates and EPOS values. Data used for training were measured by the
same system and under similar conditions as the evaluation data, which eliminates the need to
account for the system’s specific characteristics such as impinging light source spectrum, sensor

Table 1 SO2
estimated by ANN and EPOS for arterial occlusion. Mean (SD) and [max min] are

given at baseline, end of occlusion, and start of reperfusion. The SO2;ANN is calculated for evalu-
ation MSI data and for the mean over ROI-data. The result for the case where ANNs were trained
only on data from venous occlusion is presented in the last row.

Baseline End of occlusion Reperfusion

SO2 ;ANN (%)a 55.8 (7.1) 7.1 (2.9) 87.3 (3.6)

[40.3 74.9] [1.9 12.7] [75.2 91.0]

SO2 ;ANN (%)b 56.6 (7.1) 6.5 (2.8) 87.6 (3.7)

[41.0 75.8] [0.8 11.0] [75.2 91.5]

SO2 ;ANN;venOccl (%)a 59.9 (6.0) 26.1 (8.3) 74.9 (4.6)

[46.3 71.5] [17.7 48.6] [64.3 83.6]

SO2 ;EPOS (%) 55.9 (10.5) 1.8 (1.6) 88.0 (6.2)

[39.0 72.0] [-0.5 5.3] [66.8 96.2]

SO2 ;invMC (%)b 43.1 (9.5) 1.4 (2.3) 82.2 (6.6)

[21.4 61.6] [0.0 8.9] [61.6 92.7]

aMean value over 10 pixels calculated from MSI data.
bCalculated from MSI data (mean intensity over ROI).

(a) (b)

Fig. 6 (a) Typical individual SO2;ANN (red), when ANNs were trained using only venous occlusion
data, and corresponding SO2;EPOS (black). Vertical lines indicate start and end off occlusion. Time
intervals used for Bland–Altman analysis are marked in gray for baseline (0 to 55 s), end of occlu-
sion (300 to 350 s), and reperfusion (355 to 410 s). (b) Agreement between SO2;ANN and SO2;EPOS

for the 20 subjects at baseline (squares/dashed lines), end of occlusion (circles/solid lines), and
reperfusion (triangles/dash-dotted lines). The mean difference for each phase is represented by
thin lines and the difference�1.96 × SD (95% prediction interval) by bold lines. Symbols filled with
red represent data from the data set in (a).
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filters, and polarization. The utilized xiSpec MSI camera has a sensor with complex transmission
characteristics for each of the 16 different bandpass filters. Every xiSpec sensor is unique in
terms of sensitivity to different wavelengths and training is consequently camera specific.
Therefore, our presented method can be applied to other types of MSI systems if training data
are acquired by the same system used for measurements.

Other groups have used training data generated with MC simulations of tissue models.7,27

This approach does not need a series of in vivo measurements, but instead needs modeling of
both measurement system and light transport in the tissue under study. The noise induced during
measurements by camera, light source and/or aspects of tissue and light transport model affects
measured spectra and must be considered and accurately modelled.20 In our case noise is inherent
from the in vivo measurements. The randomly chosen pixels in every measurement handle pos-
sible differences over the sensor area. Zherebtsov et al. use spectra simulated from a three-
layered tissue model as training data with oxygen saturation ranging between 30% and 100%.7

Their ANN was then applied on spectra collected from the palm side of the hand during a 3-min
finger occlusion protocol and a spectral range 675 to 825 nm was used for oxygen saturation
estimations. Reported estimated SO2

values were 83% and 62% for baseline and at end of occlu-
sion, respectively. Our corresponding values are 56% and 7% from ANN estimates and 56% and
2%measured with EPOS on the volar forearm. Differences might partly be explained by a differ-
ence in vessel beds with higher oxygenation in finger tissues. We investigated this further in a
pilot experiment with a 5-min arterial finger occlusion using EPOS on the palm side of a finger.
The results for SO2

ranged from 75% in baseline to ∼0% at end of occlusion. The longer wave-
lengths used by Zherebtsov et al. may give a larger penetration depth, but they report a value of
∼2 mm in tissue simulating phantoms. Light transport simulations using Monte Carlo technique
show a sampling depth of 1.7 mm at 630 nm in skin tissue for our MSI system.2 Therefore, the
differences probably origin from the lack of training data for low SO2

values, and small distinct
spectral variations with oxygen saturation in their chosen wavelength range. From presented
best-fit spectra their overall goodness-of-fit appear great, but finer distinct spectral variations
(e.g., the 540 to 580 nm range and the 758 nm absorption peak) that are uniquely related to
the oxygen saturation level is insufficiently accounted for in their inverse modeling. The high
SO2

at end occlusion is hence likely an effect of an inverse solution that focuses more on the
overall shape rather than the finer details. This demonstrates the importance of having accurate
models that fully capture what is being measured by hyperspectral imaging or MSI when per-
forming simulations.

Regardless of how training data are acquired, it must be relevant for the anticipated appli-
cation and cover the full dynamics of possible outcomes. The arterial occlusion provocation
provides a wide range of SO2

values from 0% at end of occlusion to values close to 100% during
the reperfusion phase. Venous occlusion affects the SO2

, but not to the same extent and mainly

Fig. 7 Spatially resolved SO2
estimated from data analyzed by (a)–(c) a trained ANN and (d)–(f) by

the inverse MC algorithm described in Ref. 2. Data for three timepoints during arterial occlusion
are presented: (a), (d) during baseline; (b), (e) end of occlusion; and (c), (f) reperfusion.
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provide data in the range 10% to 70%. Applying ANNs trained on data from only venous occlu-
sion on evaluation data from arterial occlusion show difficulties for ANNs to find accurate SO2

values for data with low and high target values, since those were not included in the training data
set. Therefore, it is strongly recommended to include data from both arterial and venous occlu-
sion in the training data and limit the impact of the still slightly uneven distribution of SO2

values
by adding the error weight vector, W. One additional reason for including results from venous
occlusion provocations in the training data set was to add data collected with varying levels of
RBC tissue fraction.

Data originating from the same subject will not be completely independent as the optical
properties (e.g., scattering and absorption) within one subject only vary to some extent.
Similarly, samples from one subject, taken at the same time point, but at different spatial loca-
tions, will not be completely independent as the local microcirculatory blood volume and blood
oxygenation will only vary slightly, governed by the overall tissue status. We try to overcome
this partly by randomly sampling different spatial points over time and partly using two different
provocations where blood amount and oxygenation will vary over time. Still, the validation data,
used for determining when to stop the ANN training, and the test data will not be completely
independent since it originates from the same subjects as data used for training. The test per-
formance in Fig. 3(a) also indicates that there is a dependency between training data and test data
as all ANNs display a very similar behavior. However, with the low complexity of our ANNs and
the large amount of training data, there is no apparent risk for a substantial overtraining. This is
also supported by Fig. 3(b) where the final evaluation, using completely untouched and inde-
pendent data, display an average performance over all left-out subjects that is only marginally
larger than the test performance [Fig. 3(a)].

Optical properties vary for different skin types and probably at different skin locations. In this
study, we included only subjects with Fitzpatrick skin types I to III which exclude strongly
pigmented skin types with larger fractions of melanin. The reference EPOS system can measure
darker skin up to at least Fitzpatrick skin type V with good signal-to-noise ratio and model these
spectra with good fidelity.20 However, the need for training ANNs to the full range of Fitzpatrick
skin types I to VI is also indicated by recent observations in pulse oximetry, where darker skin
results in a small but larger number of undetected hypoxemia events.37 Furthermore, all mea-
surements were performed on the volar forearm during occlusion provocations. Our results sug-
gest that a training data set of 19 subjects is enough for training an SO2

algorithm that can
estimate SO2

in low-pigmented forearm skin. The system can probably be adapted to a variety
of situations if an ANN, possibly using more than three hidden nodes, is trained on additional
data covering also darker skin tones and other skin locations.

To evaluate how an ANN should be structured for our MSI system, we trained ANNs with
different number of nodes in the hidden layer and executed the training 10 times for each size.
Using the leave-one-subject-out procedure, ANNs were trained on 20 training data sets and per-
formance of our method was estimated for 20 sets of evaluation data not included in the respec-
tive training data set. Using leave-one-subject-out results in a reliable and unbiased estimate of
the model performance.35 The Erms;W in Fig. 3(b) varies only slightly for the 20 evaluation sets,
and the minimum mean value indicates that a node size of 3 is sufficient to estimate SO2

.
Repeated trainings showed marginal differences, which implies a stable algorithm. Based on
this, we concluded that repeated trainings were not necessary for our purposes. If the training
is extended to other tissue types, sites, and/or provocation protocols, this may change. A larger
number of hidden nodes could possibly distinguish more multifaceted and complex spectra but
may also be overtrained which could cause overfitting to certain properties or parts of the spec-
trum. Furthermore, the algorithm’s computational time increases with an increased size of the
hidden layer.

Bland–Altman analysis of SO2;ANN compared to SO2;EPOS
shows agreement at baseline and

reperfusion, but slightly higher values of SO2;ANN at end of occlusion. The result at reperfusion
shows that relatively few training spectra with high target SO2

values does not affect performance
when evaluating data with target values in that range.

As discussed in Ref. 2, the measurement depth is slightly different between MSI system and
EPOS. Training ANNs with data from our MSI system to target EPOS SO2

values diminish those
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systematic differences. Different measurement sites probably explore and compare tissues with
different physiology, including vascularization. Despite site differences this study shows that
data from the probe-based reference system can be used as target and enable spatially resolved
SO2

maps.
When trained ANNs are applied to MSI data used by Ewerlöf et al., results show agreement

between SO2;ANN and SO2;invMC in the reperfusion phase but less conformance in baseline and at
end of occlusion. ANNs were trained to fit EPOS measurements while the inverse MC algorithm
was unconnected to data from the reference system. Therefore, a better agreement between
EPOS and ANN is expected. Comparing images analyzed with ANN and inverse MC, respec-
tively, show similar values for the three time points. The ANN algorithm results in a more homo-
geneous distribution of SO2

values. The computational time for the two methods is essentially
different in favor of ANNs.

5 Conclusions

Our proposed ANN can estimate SO2
from data acquired by an MSI camera system with

unknown spectral characteristics when it is trained to target SO2
values concurrently measured

by a validated probe-based reference system. The high computational speed enables real-time
imaging. Training data need to be chosen carefully to cover expected differences in SO2

and
possibly also variation in skin type and skin location.
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