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Abstract

Significance: We present a fiberless, portable, and modular continuous wave-functional near-
infrared spectroscopy system, Spotlight, consisting of multiple palm-sized modules—each con-
taining high-density light-emitting diode and silicon photomultiplier detector arrays embedded
in a flexible membrane that facilitates optode coupling to scalp curvature.

Aim: Spotlight’s goal is to be a more portable, accessible, and powerful functional near-infrared
spectroscopy (fNIRS) device for neuroscience and brain–computer interface (BCI) applications.
We hope that the Spotlight designs we share here can spur more advances in fNIRS technology
and better enable future non-invasive neuroscience and BCI research.

Approach: We report sensor characteristics in system validation on phantoms and motor
cortical hemodynamic responses in a human finger-tapping experiment, where subjects wore
custom 3D-printed caps with two sensor modules.

Results: The task conditions can be decoded offline with a median accuracy of 69.6%, reaching
94.7% for the best subject, and at a comparable accuracy in real time for a subset of subjects.
We quantified how well the custom caps fitted to each subject and observed that better fit leads
to more observed task-dependent hemodynamic response and better decoding accuracy.

Conclusions: The advances presented here should serve to make fNIRS more accessible for
BCI applications.
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1 Introduction

Continuous-wave functional near-infrared spectroscopy (CW-fNIRS) can be used to non-
invasively measure cortical hemodynamics1 by emitting near-infrared light into the brain at the
scalp and sensing the portion that returns to the scalp after propagating diffusely through cortical
tissue. A local increase in cortical neural activities changes the surrounding tissue’s blood oxy-
genation level via neurovascular coupling,2 known as the hemodynamic response. The change in
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the blood’s oxygenation level modulates the amount of infrared light that can propagate through
and subsequently be detected by optical sensors at the scalp. The more prominent neuroimaging
approach in humans, blood oxygenation level-dependent (BOLD) functional magnetic reso-
nance imaging (fMRI),3 also measures the hemodynamic response and has seen wide applica-
tions in cognitive neuroscience,4 translational medicine, and clinical practice.5 Compared with
fMRI, functional near-infrared spectroscopy (fNIRS) has higher portability and tolerance for
motion, higher to comparable temporal resolution, but less spatial resolution, depth of view, and
signal-to-noise ratio (SNR).6,7 As a result of its relative advantages, the fNIRS field has grown
rapidly into many cognitive neuroscience and translational medicine research areas8,9 in the past
few decades. In the recent years, fNIRS has also been used to build non-invasive brain–computer
interface (BCI)10,11 communication systems that allow the use of brain activity to control
computers or other external actuators,12 which has potential applications in neurophysiology,
neurorehabilitation, and even consumer products,13–15 due to its non-invasive nature and
potential portability.

Traditional CW-fNIRS imaging uses sparse arrangements of NIR source–detector (SD) mea-
surements, resulting in significantly lower spatial resolution than fMRI.16 Recent developments
in diffuse optical tomography (DOT)17–19 and high-density DOT (HD-DOT),20,21 which use
increasingly higher numbers of NIR light sources and detectors to provide overlapping spatial
sampling of the target object, have improved the spatial resolution of the modality dramatically,
enabling three-dimensional, high-resolution functional neuroimaging with wide field-of-view.17–21

Increasing the density of the source and detector (optode) arrays provides a number of benefits,
including greater lateral image resolution,22 higher SNR,23 improved depth sensitivity and
specificity,24 and easier removal of physiological confounds.25–27 The initial advancements in
HD-DOT’s optode density were driven by coupling more optical fibers to the subject’s scalp,
approaching ∼200 in some cases,20 reducing the technique’s portability and ease of use—key
advantages that initially drove the growth of the fNIRS field. More recent advances in fiberless
CW-fNIRS technology have resulted in several commercial devices such as NIRx’s NirSport 228

and Gowerlab’s Lumo29 that achieved high optode numbers and density without compromising
portability and ease of use. However, both devices still lag behind the current HD-DOT state-of-
the-art30 in either optode density or SNR.

We present a CW-fNIRS system, “Spotlight,” composed of compact modular arrays of 39
detectors and 41 dual-wavelength NIR light-emitting diode (LED) sources (680 and 850 nm),
with 6.5 mm interoptode spacing. Each module is roughly palm-sized (∼88 mm diameter), and
multiple modules can be installed on a compatible head cap to increase field-of-view. Our system
achieves optode number, density, and SNR similar to current state-of-the-art in HD-DOT28 in
an easy-to-use portable form factor by combining advances in silicon photomultiplier (SiPM)
detectors,31 flexible printed circuit board (FPCB) fabrication, optical ferrule design, customized
3D cap printing, and modular design approaches.

We validated Spotlight in both in vitro experiments using custom phantoms with optical
properties similar to the human head and in vivo human subject experiments. Human experiment
subjects performed short-duration (3 and 6 s) finger-tapping tasks with either the left or right
hand. Hemodynamic response was measured bilaterally in the motor cortex, with activity
patterns consistent with contralateral motor control and utilized to successfully decode the
tasks’ laterality conditions. Finally, analysis was performed on factors contributing to subject
variability in signal quality and decoding accuracy to inform future CW-fNIRS designs.

2 Materials and Methods

2.1 System Overview

The full system used for in vivo validation consists of two independent optical sensor (optode)
modules [Fig. 1(a)] mounted on a custom self-donnable cap [Fig. 1(c)], over the hand-motor
cortical areas. Each module has dimensions 84.5 × 82 × 38.4 mm, weighs 163 g, and contains
41 source and 39 detector optodes [Fig. 1(b)]. Each source optode contains LEDs emitting
light of two wavelengths, 850 and 680 nm, and each detector optode contains an SiPM light
detector (OnSemi MicroRD 10035). In one module, 41 sources coupled with 39 detectors with
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2 wavelengths, there are 3198 channels. Small optomechanical structures called optical ferrules
were developed [Fig. 1(b) and Sec. 1.1 in the Supplementary Material] to guide light from LEDs
to the scalp and from the scalp to SiPM detectors. These ferrules can comb through hair and
enable dense optode packing, with a minimum SD optode separation of 6.5 mm. The optodes are
embedded in a flexible silicone membrane (see Sec. 1.6 in the Supplementary Material) enclosed
by the module housing, such that when the module is pressed against the scalp, the optodes can
make contact following its curvature. Within the module housing, the optodes are mounted on
flexible FPCBs (see Sec. 2.1 and Fig. S1A in the Supplementary Material) with tree-branch-like
patterns to provide compliance with the flexible membrane.

The coverage area of one module is 62 mm in diameter and can be extended by placing
multiple modules side by side, while still maintaining the advantage of high optode density.
This provides substantial advantages over conventional high-density fNIRS systems, in which
scaling up the number of optodes and coverage area can be more demanding. However, the gap
between the modules where optodes cannot be placed creates areas where sensitivity is lower
than the center of the modules. We minimized this non-ideal gap to 25 mm. Modules are
designed to conform to the curvature of the scalp with a tensioned elastic membrane that is
held taut by the edge of the module, resulting in a 12.5 mm border. To ameliorate the concern
of an overly large gap between adjacent modules, we use localization methods (Sec. 8 in the
Supplementary Material) to center the modules over the desired regions.

The module mounting caps can be customized to accommodate different numbers and
locations of optode modules. The mounting caps used in the human experiments were either
personalized caps designed from structural MRI scans [Fig. 1(c)] or nearest-neighbor caps.
Personalized caps were designed from structural MRI scans of the participants such that the
optode modules are aligned over the centroid of hand motor activations, and the cap shell shape
aligns to the scalp surface and landmarks to enable consistent cap fit. Participants without

Fig. 1 Modular CW-fNIRS system overview: (a) each module packages a control and an ADC
board to drive and sample from source and detector optodes embedded in a flexible membrane.
(b) Optical ferrules were designed to comb through hair, enable high-density optode placements,
and tight optical coupling to and from the scalp. (c) A custom personalized self-donnable cap
designed from MRI data for one subject. Modules are aligned over the centroid of the hand-motor
activation areas, and cap shell shape derived from scalp surface and landmarks enable consistent
placement of the cap. (d) Illustration of the human-subject finger-tapping protocol. Participants are
cued to tap their left fingers, right fingers, or stay still (in the “null” condition).
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structural MRI scans used nearest-neighbor caps, which were available personalized caps with
the closest size match.

2.2 Module Operation

Each module contains an analog digital converter (ADC) board and a mainboard for signal
acquisition, data processing and transfer [Fig. 1(a) and also see Sec. 2.9 in the Supplementary
Material]. The mainboard contains a FPGA (Xilinx XC7S50) and a microcontroller
(STEMicroelectronics STM32F765NIH6), which collectively interfaces with multiple digital ana-
log converters (DACs), ADCs, and sensors for driving the LEDs and reading from the SiPMs. The
mainboard provides communication with a host-computer either directly or by connecting into our
custom USB hub (spider and see Sec. 3.3 in the Supplementary Material), both through USB2.0.

Up to six Spotlight modules can connect via type-C USB cables to spider, which provides
pulse-per-second synchronization signal and debugging signals to the modules (see Sec. 2.12 in
the Supplementary Material). The hub also has additional analog/digital inputs for connecting
peripheral devices. The hub interfaces bidirectionally with the host PC through a single Type-C
USB2.0 cable (see Sec. 3.3 in the Supplementary Material).

During signal acquisition, the source LEDs are multiplexed to enable acquisition from all the
SD pairs without interference. The standard illumination pattern involves a 1 ms pulse width
alternating between 680 and 850 nm wavelengths on the same LED. Between each pulse is
a 1 ms ambient frame, during which the signal is used to measure ambient light levels. Each
module has a system effective duty cycle of 50%, 164 ms cycle time, and 6.1 Hz system
frequency (see Sec. 2.4 in the Supplementary Material).

2.3 Custom Cap Design

The modules are fixed on the head over the motor area for finger tapping using custom-designed
caps. Personalized caps are designed from structural MRI scans of subjects referencing the 3D
scalp surfaces and localized over the centroid of hand motor activation [Fig. 1(c)]. The cap shell
shapes were derived from the structural MRI scalp surface of the subject and aligned to the
landmarks of the skull: the inion, nasion, and left and right auricular points. These landmark
alignments ensured that the cap would be aligned consistently each time the cap is donned.
Module mounting locations were centered over the hand motor cortex as determined from
MRI data. Modules were mounted using an adjustable ratcheting spring mount that pressed the
optodes against the scalp. The flexibility of the elastic springs enabled motion to comb optodes
through hair while being self-centering.

To expand the subject pool, those who did not have MRI scans were matched to a “nearest
neighbor” cap with the closest size match based on measurements of the inion to nasion distance
and the distance between the left and right auricular points over the top of the head. Five par-
ticipants used fMRI-personalized custom caps (EBS159, CRP353, 179 MST704, UYH816, and
PJY122), whereas the other five used nearest-neighbor custom caps. Of those with personalized
caps, the motor area module placements were identified via functional fMRI experiments for
three participants, and via structural fMRI data for the other two participants. To evaluate the
effect of variability in module placement for subjects without fMRI, adjustable caps (Fig. S25 in
the Supplementary Material) were designed for two participants to further understand the
effect of modules placed off-center from the active finger-tapping region (see Sec. 8 in the
Supplementary Material).

2.4 Optical Efficiency Measurement

The light intensity of the optical sources was validated using a custom light integrating sphere
(Labsphere P/N CSTM-LPMS-060-SL) with a large enough input port (2.75 in.) to accommo-
date an entire Spotlight module. The measurements near the center of the module tend to be more
accurate, while LEDs near the edge will incur ∼5% variations. The LED drive current was set
continuously to 250 mA for all sources during the validation experiments (see Sec. 2.3 in the
Supplementary Material).
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The SiPM detectors were measured using the same custom integrating sphere from
Labsphere (P/N CSTM-LPMS-060-SL) with a large enough input port (2.75 in.) to accommo-
date either a single module for SiPM with ferrules or a SiPM FPC fixture for SiPM without
ferrules. To derive detector efficiency, the 680 nm (Thorlabs) laser injects light into the sphere
with a known intensity, and the voltages measured from SiPM with ferrules are compared against
those from SiPMs without ferrules.

2.5 Static Phantom

Static homogeneous phantoms were used to conduct in vitro system benchmarking consistently.
The core of the phantom is a custom mixed silicone made of PDMS Sylgard 182 and a mixture of
titanium dioxide and black manganese-based pigment made by Douglas and Sturgees.32 Ratios
were adjusted to achieve optical properties close to that of human tissue (μa ¼ 0.02 mm−1 and
μs 0 ¼ 1 mm−1, based on the previous experiments33). Silicone was used over harder polyurethane
mixtures to emulate the softness of the scalp. The softness allows the ferrules to “dig” into the
surface and reduces the potential for excessive photons passing from LEDs directly to the detector.
The final assembly is 110 mm in diameter and 40 mm thick (Fig. S11 in the Supplementary
Material).

2.6 System Benchmarking

We measured and tuned the performance of the sensor modules on phantoms before conducting
the human validation studies, such that the effects of cap fitting and individual physiological
differences were minimized. The module was placed on top of the static phantom during these
measurements. The sensor tuning process aimed to find the optimal device parameters to balance
the tradeoff between maximizing the detector power and minimizing the sensor noise and
signal drift.

The Spotlight modules were evaluated with the following metrics to compare individual
module performance, and a particular module’s in vitro and in vivo performances. The measured
signal (W) was preprocessed with a fifth-order Butterworth 0.01 Hz high-pass filter to remove
slow thermal drift prior to the calculations.

1. Median detector power (W) was calculated as the median of temporal mean power
detected by channels with SD distance in the range [27, 33] mm. Because the measured
power decreases exponentially with SD-distance, we limited this metric’s calculation to a
specific SD-range for simplicity. The distance range was chosen as prior literature suggests
that 30 mm SD separation provides good cortical sensitivity and is often employed in
fNIRS studies.24,26

2. Median detector noise density (W/rtHz) of a module was calculated from channels
with SD-distance >55 mm, as the light attenuation at these distances are such that the
detectors’ measurements are dominated by detector noise. System-level noise-equivalent
power (NEP) density for the selected SD pairs was calculated as the standard deviation
of the temporal mean of 1 s rolling windows. The median of these NEPs was taken to be
the final metric for a module. This metric can be thought of as the noise density at 1 Hz
and has the units W/rtHz. Note that this noise figure is different from the device-level
NEP commonly presented in avalanche photodiodes (APD)-based fNIRS devices,34

taking into account noise effects from the SiPM device, optode assembly, and system
operation.

3. Percent of good channels (%). SNR for individual channels was calculated as ratios
between mean power and detector noise density. Channels with SNR > 100 were deemed
“good.” The final metric here is taken to be the percentage of good channels with SD
separation in the range [27, 33] mm.

Note that as detected power of a channel decreases with increasing SD-distance due to scat-
tering attenuation, the SNR and detector power metrics presented above are specified within the
representative range of [27, 33] mm.
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As the operating characteristics of the LED sources and SiPM detectors change with temper-
ature, measurements were taken only after the module had reached thermal stability after being
on for at least 10 min (see also Sec. 2.8 in the Supplementary Material). The calculations were
then performed on the subsequent 30 min of data in both phantom and in vivo experiments.

Spotlight’s system dynamic range was calculated from the light fall-off curve20 collected
from static phantom measurements (Fig. S13 in the Supplementary Material), taking the maxi-
mum measured power range (see Sec. 2.7 in the Supplementary Material).

2.7 Experiment Control

A custom software framework, Labgraph (see Sec. 9 in the Supplementary Material), was used
during all human subject experiments to stream data from Spotlight, preprocess data, control
experiment flow, present protocol stimulus, log keyboard events, and present visual feedback.

2.8 Human Data Collection: IRB and Experimental Design Ethics

The experiments were conducted following authorization from Meta Reality Lab’s Research
Committee, which includes reviews for environmental health and safety, optical safety, and hard-
ware safety. The experiments were also approved by an external Institutional Review Board
(IRB) in accordance with the Nuremberg Code, Declaration of Helsinki, and the Belmont
Report.

Data were collected from ten participants: three female and seven male, with an average age
of 33.2 years. Nine subjects are right-hand dominant, and one subject is left-hand dominant.
No subject had a known history of any neurologic or psychiatric disorder. All participants
received and signed an informed consent document containing information about experiment
participation, compensation, risks, and benefits, in addition to sections informing subjects of
data usage, rights during the experiment, and data/confidentiality protections. Subjects also
met with a research assistant who solicited and answered questions, confirmed understanding,
and evaluated comfort. Randomized alphanumeric IDs were generated to protect anonymity of
participants.

2.9 Experiment Protocol (“Two Duration Finger Tapping Protocol”)

All participants participated in the hemispheric laterality experiment described below.
The hemispheric laterality experiment was modeled after Birn et al.35 to replicate established

results in the literature. Two 40-min sessions were collected on two separate days (Fig. 2).
When the stimulus displayed a hand cue, subjects tapped their thumb, index, and little finger
sequentially until the cue disappeared (for 3 or 6 s). Participants remained at rest during the null
condition and also during the post-stimulus interval (PSI) period (20 s in duration). There were
five conditions in total: right-hand 3 s, right hand 6 s, left hand 3 s, left hand 6 s, and null.
Consecutive null trials were not allowed (to allow for a more engaging experiment). Twenty
trials (four trials per condition) were grouped into a “block” where the subjects continuously
performed the task. Each block was preceded and followed by 20 additional seconds of rest,
and self-paced rest time was allowed between blocks. In each session, four blocks of data were
collected in total, resulting in 80 trials (16 trials per condition).

During experiment sessions, subjects were seated in front of a monitor with both hands on the
keyboard. The displayed instructions before the start of each experiment reminded subjects:
(1) to stay still, (2) to tap their fingers in the correct order, (3) to attend to each finger as it
was being tapped (4) that there would be a break following each block. Breaks were self-paced;
subjects would advance onto the next block by pressing the spacebar. To the best of their ability,
subjects conducted experiments in the same lighting conditions. All subjects underwent a cap-
fitting procedure before the protocols started to maximize optode SNR while maintaining com-
fort. The SNRs were evaluated in real time and visualized with a light-fall off curve, along with
a dynamic visualization superimposing the mean power of each detector on the module layout.

Additional experiments were conducted on a subset of participants. The real-time closed-
loop hemispheric laterality experiment was conducted to evaluate the effects of real-time closed
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loop feedback on decoder performance. The digit-localization experiment (see Sec. 7 in the
Supplementary Material) was conducted to further evaluate the ability to discriminate between
individual digits within a single hemisphere/optode array. The localization experiment (see Sec.
8 in the Supplementary Material) was conducted to demonstrate the mechanical advancements of
the localization cap. All analysis presented in the results section use data collected during the
hemispheric laterality experiment sessions, unless specified otherwise.

2.10 Signal Preprocessing

Minimal analog filtering is applied to the sensor measurements before digitization. The digitized
measurement values (6.1 Hz sample rate) are proportional to the incident power detected by the
SiPM. This is the starting point for both offline and real-time signal processing. The following
digital signal preprocessing steps are used (refer to Sec. 4 in the Supplementary Material for
more details):

1. Bad channel removal
2. Detrend
3. Optical density conversion
4. Bandpass filtering
5. Superficial regression
6. Conversion to hemoglobin

2.11 Optode Coupling/Pulse Signal-to-Noise Ratio

To quantify the quality of cap-fitting and how well the optodes were coupled to the scalp, we
derived individual channel’s pulse SNR from the power spectral density on optical density data,
using a constant false alarm rate (CFAR)-based method (see Sec. 5.1 in the Supplementary
Material). The pulse SNR measures the strength of heartbeat-related signal within a channel
and can be an indicator for optode coupling quality.36 The pulse SNR is calculated for all
channels that CFAR determines to have a peak in the pulse range (and set to 0 otherwise).
Pulse SNR < 1 is also set to 0.

Fig. 2 Experimental design of the hemispheric laterality experiment. (a) Illustration of the trial
structure: the performance period consisted of right-hand tapping, left-hand tapping, or null (no
tapping), for a duration of 3 or 6 s. The PSI period was 20 s. (b) Summary of the experiment:
20 trials were collected per block and 4 blocks were collected total, for a total of 16 trials per
condition for the whole experiment. The experiment lasted roughly 40 min.
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2.12 Cap Fit Metric

After the subjects donned the custom caps, they shifted the cap and hair around while tightening
the sensor modules to achieve a more comfortable fit and better optode coupling to the scalp. We
characterized the quality of this cap-fitting process with a custom “cap fit” metric, derived from
pulse-SNRs. Pulse SNRs were calculated for all channels with SD-distance between 25 and
50 mm. Channels in this range were chosen as they are most sensitive to cortical activities for
all subjects. As there can exist scalp contact differences between individual sensor modules, the
pulse-SNR averages for the modules were calculated, and their minimum is the cap fit metric.
The rationale for this metric is that better cap-fitting leads to better optode-scalp coupling and
stronger pulse detected in more channels.

2.13 Trial-Rejection Based on Behavioral Response

For each session, finger tap events represented by keyboard press by the participant were logged.
A finger-tapping trial was classified as behaviorally correct only if (1) the correct finger taps
(e.g., left fingers for left-hand condition) happened within the expected performance window
(during visual cue presentation) and (2) no finger-tap events happened before the onset or
0.8 s after the offset of the visual cue. Behaviorally incorrect trials were discarded from offline
analysis.

2.14 Characterizing Functional Activation of a Single Channel

To validate that our device was indeed measuring hemodynamic activities, we checked for
the resemblance of the two hemoglobin [oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR)] species’ evoked response to the canonical hemodynamic response function
(HRF)37–39 and the evoked responses’ consistency with motor hemispheric lateralization.

We used general linear models (GLMs) (see Sec. 5.2 in the Supplementary Material) to
measure how much of a channel’s evoked response can be attributed to the canonical HRF
evoked by a specific condition (finger-tapping conditions), as a proxy for task-dependent
activations exhibited by that channel. The task-dependent activations are quantified by the
resulting GLM t-statistics associated with each finger-tapping condition. In addition, one can
measure a channel’s task-dependent activation differences with the t-statistic of between con-
dition contrasts. The significant channels and the associated t-statistic values per condition or
contrast can then be visualized on haystack plots [see Sec. 2.18 and Fig. 3(a)].

The r-squared (R2) of each channel’s fitted regression model evaluates the percentage of
variance explained by the expected hemodynamic response for all the conditions and thus can
be used to characterize how strong functional responses are for each channel.

2.15 Arch Metric: Composite Metric to Measure Captured Hemodynamic
Content

A custom “arch metric”was used to quantify “hemodynamic content captured” during an experi-
ment. We assumed that the R2 of the regression between a channel’s measurements against
canonical HRF can be taken to characterize that channel’s functional activation, if significant.
The distribution of the R2 values was heavily skewed to the right. The degree of skewness differs
for channels within different distance ranges, and the maximum R2 values are typically the
greatest in distance ranging 25 to 40 mm, before declining toward longer distances (Fig. 4).

To generate a metric for the “amount of hemodynamic content” captured in a recording,
we calculate the following “arch metric:”

EQ-TARGET;temp:intralink-;e001;116;134Varch ¼
Xd¼55 mm

d¼20 mm

maxðmðd1; d2 þ 5Þ −mð15; 20Þ; 0Þ; (1)

where mðd1; d2Þ represents the mean of the significant R2 values for channels within distance
range d1 and d2. This composite metric provides a more fine-grained way to quantify overall
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hemodynamic content captured by the system compared to simpler metrics without taking into
account channel SD-distance (see Sec. 5.3 in the Supplementary Material). As channel SD-
distance increases above 20 mm, the measured signals should become more sensitive to cortical
activities. Setting mðd1; d2Þ as baseline and summing additional increases in the subsequent
SD-distance ranges reflect this property.

Fig. 4 Typical distance versus GLM R2 relationship for individual channels. x axis is the SD-
distance, y axis is the R2 values derived from the GLM regressions. Only values for significant
R2 values are shown.

Fig. 3 Haystack and evoked response plots: (a) haystack plots showing left-hand versus right-
hand tapping contrast t -statistics for modules on the left and right hemisphere for HbO (top) and
HbR (bottom). Each hexagonal cluster of points represents the source and detector locations of
a single module. Lines connecting two points represent SD pairs, and the line color represents
t -statistic values. For HbO, higher t -statistic (more red) indicates a channel is more responsive to
left-hand tapping than right-hand tapping. This is the opposite for HbR (more blue is more respon-
sive to left-hand tapping). (b) Evoked response plots showing all finger-tapping conditions for two
example channels (left and right columns), with channel locations shown in the module diagrams
in the first row. The colored traces and shadings represent the trial average and interquartile range
for a channel’s measured concentrations in arbitrary units, different tapping conditions (different
colors), and hemoglobin species (different rows). The gray vertical line on the x axis marks the
stimulus onset. (c) Decoder predicted hemodynamic response (colored traces) for different trial
conditions (top to bottom). Colored traces illustrate the predicted hemodynamic response for
different conditions for specific trials (i.e., orange traces in the top plot are the predicted hemo-
dynamic response for hand-right condition when the trial condition is hand-right, lavender traces in
the top plot is that for hand-left condition when the trial condition is hand-right).
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2.16 Task Condition Decoding

We performed decoding of the finger-tapping experiments’ stimulus conditions both offline from
collected data and in real time to provide visual feedback. Pilot experiments have shown motion
artifacts present in some channels can be used to decode stimulus conditions and contribute
disproportionately to a decoder. To limit the influence of these non-neural related processes,
we introduced explicit decoder constraints such that only channels exhibiting HRF-like evoked-
responses can be used.

During decoder training, for each stimulus condition, channels were ranked according to
their evoked-responses’ resemblance to the canonical HRF. Then for each condition, a linear
combination of the top-ranking channels is learned to maximize its correlation with the canonical
HRF (termed “predicted hemodynamic response”). During inference, the learned linear combi-
nations are applied and the predicted condition is the one with predicted hemodynamic response
most similar to the canonical HRF. Altogether, these constraints maximize the decoder’s reliance
on hemodynamic signals (see Sec. 6 in the Supplementary Material).

For offline single-session decoding, we used the first half of the trials as training data and the
remaining half as testing data. For real-time, closed-loop decoding sessions, a decoder was
trained with two blocks of trials without feedback; then the trained decoder was applied to pro-
vide real-time feedback for subsequent testing trials. During decoding performance comparison,
a permutation test (n ¼ 200) was conducted to approximate a chance decoding level.

2.17 Visualization: “Haystack” Plots

Given a scalar statistic (e.g., the t-statistics from GLM) for each SD pair, we can visualize them
spatially in a “haystack plot” [Fig. 3(a)]. Each SD pair is represented by a line connecting the
coordinates of the corresponding source and detector locations in a 2D plane, with the line color
representing the scalar value.

In Fig. 3(a), the two modules are plotted in the same coordinate frame, roughly as if we
flattened the curved surface of the skull in which the modules were mounted. The origin of
this coordinate frame is the midpoint between the two modules. The x axis corresponds to the
left-to-right direction, and the y axis corresponds to the anterior–posterior direction.

3 Results

We first present in vitro device characterization followed by cortical activities measurement and
decoding for in vivo finger-tapping experiments [Fig. 1(d)].

3.1 Sensor Characterization

The average optical power measured at the end of source ferrules was 35.2 mW per red LEDs
(680 nm) and 30.9 mW per infrared LEDs (850 nm). The average coupling efficiency of the
source ferrules, which measures the percent of optical power transmitted from the LED, was
23.4% for red wavelength (680 nm) and 26.8% for the IR wavelength (850 nm). The average
coupling efficiency of the detector ferrule, which measures the percentage of optical power trans-
mitted to the detector via the ferrule, was 11%. Detector SiPM NEP was calculated from data-
sheet values to be 1.27 fW-rms (850 nm) and 0.77 fW-rms (680 nm), translating to detectivity34

of 40.4 and 24.5 fW-rms∕mm2 (see Sec. 1.3 in the Supplementary Material).

3.2 System Performance Benchmark

The metrics (see Sec. 2) presented here are the median of all measured sensor modules calculated
from phantom experiment data. The module median detector noise density is 17.7 fW∕rtHz and
is calculated from optode pairs with SD-distance >55 mm. This noise figure is low compared to
conventional CW-fNIRS systems using photodiodes or APD. The module median detector
power is 51.45 pW and is calculated from optode pairs with SD-distance within [27, 33] mm.
We characterized optode pairs to be “good” when they have SNR > 100 and tracked the per-
centage of good channels within the [27, 33] mm SD-distance range, which was over 99.0% for
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all modules tested (results in ∼505 channels out of 510 in the range). As further comparison, we
also calculated the number of viable channels using definitions presented in Refs. 40–42.
We calculated the noise floor from channels with SD distances above 55 mm and used that as
a threshold on phantom data, yielding 2984 viable channels (∼93.3% of 3198 channels). The
overall system dynamic range was measured to be 120 dB.

3.3 Task-Dependent Hemodynamic Responses Consistent with Motor
Cortical Hemispheric Lateralization

GLM analysis to characterize functional activation was applied on the hemispheric laterality
experiment data. Figure 3(a) plots the t-statistics of left-hand versus right-hand tapping condition
contrast for different channels spatially, in the form of “haystack plots,” for each module (left
versus right column) and hemoglobin species (top: HbO and bottom: HbR). For clarity, within
a module, only channels with t-statistic in the top 50-percentile were shown, and each channel’s
t-statistic value is represented by the color of the line connecting that channel’s source and
detector locations. The plotted values indicate how much the concentration of the hemoglobin
species for each channel can be explained by the expected hemodynamic response due to left-
hand tapping compared with that due to right-hand tapping. The concentration of HbO is
expected to increase during cortical activations and correlate positively with canonical HRF and
vice versa for HbR.37,43 Motor cortical hemispheric lateralization predicts that the left motor
cortex should exhibit stronger activation during right-hand tapping and vice versa. This means
that the t-statistic for left-versus-right contrast should be negative for left-hemisphere HbO
channels (less left-hemisphere activation during left tapping) and positive for right-hemisphere
HbO channels (more right-hemisphere activation during left tapping). This trend should be
reversed for HbR channels. Indeed, this is the case as shown in the haystack plots.

The evoked response plots in Fig. 3(b) illustrate how HbO and HbR concentration time
courses differ for different tapping conditions, for a representative channel from each hemi-
sphere. The HbO time courses for both channels correlate with that of the canonical HRF, but
the peak for left tapping (orange trace) is greater than that for right tapping (lavender trace) in the
right hemisphere channel (top-left plot) and vice versa for the left hemisphere channel (lavender
peak higher than orange peak in top-right plot). The trends for HbR (bottom plots) are reversed
for each channel, as expected of the anticorrelation between HbO and HbR.43

One motivation of having higher optode density in an fNIRS system is the potential ability to
resolve finer spatial differences in hemodynamic activities. We conducted a variant of the hand
tapping experiment to check if Spotlight can differentiate functional activations corresponding
to fingers on the same hand without using tomographic reconstruction (see Sec. 7 in the
Supplementary Material). Despite some marginal trend in the HbO activation in differentiating
tapping right thumb and pinky fingers, we did not observe significant separation and found no
clear positive evidence.

3.4 Task Condition can be Decoded from Hemodynamic Responses

Figure 3(c) shows the different predicted hemodynamic responses for different stimulus condi-
tions in one offline decoding session. This figure illustrates that the predicted hemodynamic
responses for the true stimulus condition are usually the ones that most resemble the canonical
HRF and that the decoder is most likely leveraging hemodynamic activities.

Figure 5 shows the offline decoding accuracy for all participants in the Hemispheric
Laterality Protocol. The median decoding accuracy across 10 subjects was 69.6%, ranging from
a minimum of 35.0% to a maximum of 94.7%. The chance decoding accuracy, calculated as the
median permutation test decoding performance across all the subjects and sessions, was 41.3%,
and 15 out of 20 total sessions had decoding accuracy significantly above their corresponding
chance level. Between-session decoding performances differences were small (<10%) for all but
2 subjects (UYH816 and EBS159).

Four subjects additionally performed the Hemispheric Laterality Protocol with real-time
feedback provided by a decoder trained from two experiment blocks. The real-time decoding
accuracies are similar to each subject’s respective offline decoding accuracies (see Fig. 5).
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3.5 Better Cap Fit Correlates with More Captured Hemodynamic Activities
and Higher Decoding Accuracy

The simplicity of our finger-tapping validation task and the decoder structure allowed us to ana-
lyze factors that affect Spotlight’s system performance in the BCI context. We hypothesized
more hemodynamic content captured should lead to better decoding accuracy and factors, such
as cap fit and personalization would contribute to more hemodynamic content to be captured.

We treated the R2 of each channel’s HRF GLM (see Sec. 2) fit as a measure of its functional
activation. A custom “arch metric” was used to quantify “hemodynamic content captured”
during an experiment (see Sec. 2.15), which summarizes the functional activation of channels
over different SD-distance ranges. As this quantity is heavily skewed to the right, we further
apply a square root transform in regression analysis and this transformed quantity is referenced
below and in Fig. 6.

We found that the total hemodynamic content captured by all the channels correlated strongly
to offline finger-tapping decoding accuracy [R2 ¼ 0.761, p < 5 × 10−6, Fig. 6(a)]. As the two
modules on a single cap can be adjusted with some degrees of freedom, we found that individual
module’s cap fit (see Sec. 2.12) correlated moderately with the corresponding module’s
hemodynamic content captured (R2 ¼ 0.249, p < 0.001). However, the per module relationship
between cap fit and captured hemodynamic content increased significantly after taking into
account different subjects’ cap personalization [R2 ¼ 0.590, p < 5 × 10−7, Fig. 6(b)]. Specifically,
given the same cap fit metric, the usage of a personalized cap correlated with an increase in
captured hemodynamic content.

Since cap fit measures scalp-optode coupling and captured hemodynamic content measures
task-dependent activation, the positive effect of cap personalization shown was interpreted to
indicate that personalized caps enable better placement of the modules over the hand-motor
cortical areas. Subsequently, we tested the effects of non-centered placement of the module over
the hand-motor cortex for one subject with a personalized cap based on functional MRI data in
a cap localization experiment (see Sec. 8 in the Supplementary Material). This experiment
showed significant differences in task-dependent activations among different module place-
ments, with centered placement resulting in higher activations for more channels (Fig. S27 in
the Supplementary Material), consistent with our interpretation of the cap personalization effect.

As an additional control, we also performed regression analysis including hair length as a
factor (six subjects with short hair, three subjects with medium hair, and one outlier subject with

Fig. 5 Finger tapping decoding accuracy across subjects for two sessions each (S1, S2, filled
triangles). Diamond and horizontal lines correspond to the permutation test decoding accuracies
(chance level) for the same sessions. Subjects are sorted on the x axis by their lowest session
decoding accuracy (low to high). The y axis is decoding accuracy in percentage. Four subjects
(subject APF424, BJH630, EBS159, andMST704) also each performed a session where real-time
decoder feedback was given, and the real-time decoder results are shown as stars. The lavender
boxplot aggregates all offline decoding accuracies across subjects and non-feedback sessions
(25th percentile = 49.3%, median = 69.6%, 75th percentile = 87.0%). The gray boxplot aggregates
that for permutation test decoding accuracies.
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shaved head). Hair length was found not to be significantly correlated with decoding accuracy,
cap fit, or captured hemodynamic content. It was also found not to be significantly correlated
with hemodynamic content after taking into account cap fit and/or cap personalization.

4 Discussion

The Spotlight system presented here advances upon the current portable high-channel count
fNIRS systems by increasing the optode density, lowering noise floor, and maintaining system
SNR and dynamic range, such that it approaches fibered high-density systems’ performance
while staying portable. Each of Spotlight’s 60 mm-diameter modules fits 80 optodes with
6.5 mm inter-optode spacing. Commercially available portable CW-fNIRS systems have larger
inter-optode spacing and a sparser set of total available channel SD-distances. For example,
Lumo provides channel SD-distances of 10, 20, 50, 60 mm, and above; NIRX CW-fNIRS pro-
vides channel SD-distances of 15, 34, 54, and 64 mm. In comparison, our system has more than
20 different channel SD-distances between 6.5 and 60 mm, with ∼60% of channels in the SD-
distance range 20 to 40 mm. Previous studies using different Lumo configuration in 12-module
and 24-module systems quantified the number of viable channels available and found 489 chan-
nels (dual wavelength) out of 1728 channels in vivo,40 717 per wavelength out of 1728 channels
(in phantom),41 and 800 channels out of 3456 dual wavelengths channels (in 10 to 45 mm).42

Although it is difficult to directly compare systems with different optode geometry and configu-
ration using this metric, Spotlight had an average of 2984 out of 3198 channels (∼93.3%) that
were viable in phantom measurements.

Spotlight’s improved sensor packing and performance can largely be attributed to SiPM’s
single photon sensitivity, fast timing response, low operation bias, and compactness,44,45 com-
bined with integrated optomechanical ferrule design. Spotlight adds to recent works in multi-
channel fNIRS systems based on FPC-integrated SiPMs46–49 that altogether point to SiPM
detectors as a clear direction for future works.

The optical improvements enabled us to miniaturize high-channel count sensor assemblies
into a small, portable modular form factor that simplifies fNIRS-based neuroimaging and BCI

Fig. 6 Better cap fit correlates with more captured hemodynamic content and higher decoding
accuracy: (a) hemodynamic content captured by all sensors correlates strongly with decoding
accuracy (R2 ¼ 0.761, p < 5 × 10−6). Each point represents a single session, colors represent
different subjects, and the color corresponds with Fig. 4. (b) Scatterplot shows cap fit versus hemo-
dynamic content captured for individual modules. Each point represents a module in a single ses-
sion, colors represent different subjects, and shapes represent whether a personalized cap was
used (NN, nearest neighbor cap). Regression between cap fit and hemodynamic content hasR2 of
0.249 (p < 0.001), which increased to 0.590 (p < 5 × 10−7) after taking into account of the cap type.
The boxplot shows the distribution of module hemodynamic content, with the brown triangles
representing outlier sessions for a single subject that were excluded in the regression analysis.
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experiment setups. Although we have only used two modules at a time in the presented experi-
ments, multiple modules can combine to easily increase imaging coverage area when combined
with 3D cap printing.

Although our human subject experiments demonstrated that a single-user operated Spotlight
can reliably capture task-dependent hemodynamic responses that can also be used for real-time
decoding, they also provided insights into areas of improvements needed for fNIRS technology,
particularly toward BCI applications. Perhaps unsurprisingly, we found that better optode-
coupling, as measured by our cap fit metric, is associated with more captured task-dependent
hemodynamic response, leading to better decoding accuracy. The lack of cap fit seems to be
mitigated using personalized caps that can better center the sensor modules over the cortical
areas of interest. The effect of localization can be quite significant as demonstrated by our
localization experiment and points toward potential experiment protocols where the modules’
placement can be adjusted in real time. Neither cap fit, task-dependent activation, nor decoding
accuracy seem to be significantly associated with hair length, which suggests our flexible-
membrane embedded optode design may be effective at combing through hair and making effec-
tive scalp contact. Although further studies with more diverse hair characteristics are needed, this
points to membrane-structure as an alternative to NIRx-style individually spring-loaded optode
design for effective light-coupling to the scalp. Adjustable module placements and conforming
membrane optode structures combined with more adjustable cap designs should then make it
possible to conduct very large-scale fNIRS studies with diverse populations, while maintaining
overall signal quality, portability, and ease of use.

One of Spotlight’s key strengths is its high optode density and channel counts. Studies with
the current state-of-art fiber-based HD-DOT systems have shown improvements in spatial res-
olution,22 SNR,23 depth sensitivity, and specificity.24 Of these potential improvements, better
spatial resolution is of particular interest to improve the ability of fNIRS to study cortical proc-
esses and their application to BCI. Using ultra high density DOT, Markow et al.50 discussed how
the point-spread function decreased as the optode density increased, demonstrated that a 6.5 mm-
spaced optode DOT system covering visual cortex yielded higher decoding accuracy than their
previous 13 mm-spaced DOT system in decoding naturalistic movie clips seen by human sub-
jects, and attributed the decoding improvements to better spatial resolution associated with the
higher optode density. A key limitation of BOLD imaging techniques, such as fNIRS and fMRI,
has been their low temporal resolution, restricted by the relatively long time course of the hemo-
dynamic response. Although ongoing research aims to improve the temporal resolution by
potentially leveraging the “initial dip” feature51 of the hemodynamic response, a promising
alternative approach is to derive the time course of cortical responses by tracking the phase
differences of hemodynamic response across cortical locations,52 effectively achieving higher
temporal resolution. Therefore, increasing the optode density of an fNIRS system may lead
to increase in both spatial and temporal resolutions.

Our supplementary experiment checked Spotlight’s ability to differentiate activation patterns
corresponding to the tapping of different fingers on the same hand, hypothesizing its optode
density should provide enough spatial resolution for this task. The lack of clear positive evidence
in this supplementary experiment does not reject the value of having higher optode density,
however. Higher optode density relaxes the sensor localization requirements and allows the
real-time localization concept mentioned before to be potentially applied on the module level
by operating only the most task-activated channels with longer integration windows to increase
SNR. Spotlight’s inability to differentiate same-hand finger-tapping responses also point to
future lines of investigation for increasing fNIRS spatiotemporal resolution. We did not apply
full tomographic reconstruction as in Ref. 50. Somatotopy and functional organizations in the
motor cortex, especially in the hand-motor cortex, are spatially convoluted and functional areas
contain significant overlaps,53–56 such that sensor-space analysis and naive infinite-slab tomog-
raphy models may not be sufficient to distinguish the responses. Additionally, the activation
differences for same-hand finger-tapping are likely to be less than different hand tapping, thus
requiring significantly more trials to be collected. Taken together, future validation of fNIRS
spatiotemporal resolution improvements due to optode density should consider more carefully
choices in cortical regions of interest and signal analysis spaces.
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Spotlight’s goal is to provide a more portable, accessible, and powerful fNIRS device for
neuroscience and BCI applications. As we share Spotlight designs, we hope it can spur more
advances in fNIRS technology and better enable future non-invasive neuroscience and BCI
research.
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