
RESEARCH PAPER

Spatial averaging method based on adaptive
weight for imaging photoplethysmography

JongSong Ryu ,a,b HyonSam Ryu,c Shili Liang ,a,* SunChol Hong,d Yueqi Lian,a

and Zong Zhenga

aNortheast Normal University, School of Physics, Changchun, China
bUniversity of Science, Faculty of Physics, Pyongyang, Democratic People’s Republic of Korea

cState Academy of Sciences, Institute of Mechanical Engineering, Pyongyang, Democratic People’s
Republic of Korea

dAcademy of Ultramodern Science, Kim Il Sung University, Pyongyang, Democratic People’s Republic of Korea

ABSTRACT. Significance: Imaging photoplethysmography (iPPG) is a non-contact measuring
technology for several physiological parameters reflecting personal health status
without a special sensor. However, the pulse signal obtained using the iPPG usually
is contaminated by various noises, and the intensity of the interesting pulse signal is
relatively weak compared to the noises, emphasizing the necessity of obtaining
high-quality pulse signals to measure physiological parameters correctly.

Aim: Various regions of the face harbor distinct pulse information. We propose a
spatial averaging method based on adaptive weights, which can obtain high-quality
pulse signals by applying different weights to facial sub-regions of interest
(sub-ROIs; sROIs).

Approach: First, the facial ROI is divided into seven sROIs and the coarse heart
rate (HR) is calculated from them. Next, the signal-to-noise ratio (SNR) of the raw
signal obtained from each sROI is calculated using the coarse HR, and then a high-
quality pulse signal is obtained by assigning positive or negative weights to each
sROI based on the SNRs.

Results: We compare our method with others through the quality analysis of the
obtained pulse signals using the self-collected database and the public database
PURE. The comparison results show that the proposed method can provide a better
pulse signal compared to other methods under various resolutions and states.

Conclusions: This proposed method can obtain the pulse signal with better quality,
which is helpful to accurately measure physiological parameters, such as HR and
HR variability.
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1 Introduction
The cardiac cycle is the complete cycle of events in the heart from the beginning of one heart beat
to the beginning of the next.1 Through cardiac cycle analysis, important physiological parameters
such as heart rate (HR) and heart rate variability (HRV) can be obtained, which can help predict
and diagnose a person’s heart vascular disease.

*Address all correspondence to Shili Liang, lsl@nenu.edu.cn

Journal of Biomedical Optics 085003-1 August 2023 • Vol. 28(8)

https://orcid.org/0000-0002-4848-9947
https://orcid.org/0000-0002-5294-7197
https://doi.org/10.1117/1.JBO.28.8.085003
https://doi.org/10.1117/1.JBO.28.8.085003
https://doi.org/10.1117/1.JBO.28.8.085003
https://doi.org/10.1117/1.JBO.28.8.085003
https://doi.org/10.1117/1.JBO.28.8.085003
https://doi.org/10.1117/1.JBO.28.8.085003
mailto:lsl@nenu.edu.cn
mailto:lsl@nenu.edu.cn
mailto:lsl@nenu.edu.cn


Currently, electrocardiography (ECG) and photoplethysmography (PPG) are the most
common technologies for cardiac cycle analysis. The ECG obtains the electrocardiogram signals
by first attaching the electrodes of the sensors to the different parts of the human body and then
getting electrical signals from several parts of the human surface. The PPG uses electrooptical
technology to obtain a pulse signal by detecting a change in blood volume in the skin tissue
through contact between the sensor and the human skin. Although the accuracy of measuring
physiological parameters with these two technologies is high, the electrodes or the sensors
require direct contact with the human body, which causes inconvenience to people and is unac-
ceptable for special populations like burn-patients, newborn babies, people with sensitive skin,
and so on. They are also not suitable for everyday measurements because they use special sensors
that are not commonly used in daily life. The imaging PPG (iPPG) is a technology that can
analyze the cardiac cycle without contact with the human body, which is developed from the
PPG, and the pulse signal is obtained by recording the color change of the skin with a camera
using ambient light as a light source. The iPPG can overcome the limitations of ECG or PPG
since it measures physiological parameters using a camera, a ubiquitous device in our everyday
lives, instead of special sensors requiring contact with the human skin.

Since the change in skin color caused by heartbeat is very small, the pulse signal obtained by
iPPG is very weak and easily affected by ambient light changes and the relative movement
between a camera and people. The measurement of physiological parameters based on iPPG
can be divided into three steps: the first is to obtain the pulse signal from the video by image
processing technology; the second is to remove the noise in the pulse signal by some signal
processing techniques; and the third is to measure the physiological parameters. The quality
of the pulse signal obtained in the first step often affects the measurement accuracy of physio-
logical parameters, especially if noise dominates. Therefore, it can be said that the step of
obtaining the pulse signal is the most basic and important.

The quality of the pulse signal depends on the selection of the ROI and the spatial averaging
method. In the measurement of physiological parameters based on iPPG, any exposed skin
region can be used as the ROI. In some studies,2–12 the lower leg, palm, and forearm were used
as the ROI, but most studies used the whole face or parts of it, which was not easily covered and
well perfused. The studies using a face region as the ROI can be divided into two categories: one
is using the rectangular region surrounding the whole face or a predefined percentage of it as the
ROI;13–17 the other is using a certain region of the face as the ROI.18–29 The comparative analysis
of the pulse signals obtained from the forearm (dorsal), forearm (ventral), forehead, palm, hand
(dorsal), cheek, nose, and whole face was performed, and the results showed that the forehead
and cheek can provide the high-quality pulse signal.18–20 On the other hand, some authors use
facial skin region as ROI21–27 or adaptively select ROI providing high-quality pulse signal.28 The
disadvantage of the above studies21–28 is that they use a specific region of the face as the ROI and
obtain the pulse signal from it, so it cannot effectively utilize the pulse information of different
parts in the face. In Ref. 19, distinct weights were assigned to each small block to effectively
utilize the pulse information from various facial regions. The input images were divided into
small blocks, and the raw signals were obtained from the small blocks. The coarse HR was
calculated to apply the same weights to the raw signals obtained from the small blocks. On the
other hand, the ratios between the area under the power spectral density of the raw signals
obtained from the small blocks within a specific region around the coarse HR and the area outside
of that region were calculated. Then, a threshold was established during setting the weights. If the
calculated ratio of a small block was found to be lower than the threshold, the weight assigned to
that small block was set to 0. Conversely, if the calculated ratio exceeded the threshold, the
weight was set to the calculated ratio itself. Finally, the weights were applied to the raw signals
obtained from the small blocks to extract high quality pulse signal. However, this method
neglects regions that contain less pulse information, limiting its ability to fully utilize the pulse
information within the ROI. Furthermore, since the coarse HR was calculated using the raw g-
channel, it is susceptible to larger errors when the noise component outweighs the pulse com-
ponent, especially during subject movements. Consequently, this can lead to difficulties in
obtaining accurate weights for subsequent analysis.

In our previous paper,29 the facial ROI was divided into seven sub-regions of interest (sROIs)
considering the distribution of blood vessels, skin thickness and skin surface temperature, and
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suitable fixed weights (FWs) were determined for each sROI through experiments conducted on
a database. Among these FWs, the two sROIs with the lowest signal-to-noise ratio (SNR) were
assigned values less than or equal to 0, whereas the remaining sROIs were assigned positive
values. By utilizing fixed positive or negative weights, this method effectively leveraged the
sROIs that contained less pulse information, all while requiring small computation. However,
since the distribution of pulse information varies among individuals, the spatial averaging
method based on FWs may have limitations in terms of adaptability. On the other hand, in our
previous paper,30 we proposed a modified plane-orthogonal-to-skin based method (POS) for
motion-robust HR measurement. Since the modified POS enhanced the performance of POS
by projecting onto the CbCr-plane in YCbCr color space, we refer to this modified POS as
POS(CbCr) throughout the paper. In this paper, we propose a novel spatial averaging method
that employs adaptive weights for seven sROIs to enhance the quality of pulse signals. We
improve the accuracy of the weights by calculating the coarse HR using POS(CbCr).
Furthermore, by assigning adaptive positive or negative weights to the seven sROIs, we not only
effectively utilize sROIs with less pulse information but also improve the method’s adaptability.
The self-collected database and the public database PURE14 are used to verify the performance of
the proposed method.

2 Methods

2.1 ROI Selection
As the heart expands and contracts, there are quasi-periodic changes in the amount of hemo-
globin in the capillaries of the dermis, which change the color of the skin. The iPPG-based meth-
ods to measure the physiological parameters use a camera to record such skin color changes to
obtain the pulse signal. Therefore, the measurement of physiological parameters based on iPPG
will be affected by the skin thickness and the distribution of blood vessels in the ROI. In addition,
the quality of the pulse signal obtained by iPPG is also related to the area of ROI. On the other
hand, as shown in Fig. 1, the distribution of blood vessels, skin thickness, and skin surface tem-
perature in different parts of the face are different. In this paper, the facial ROI is divided into

Fig. 1 (a) The distribution of blood vessels, (b) anterior view of epidermal relative thickness
values.31 (c) Skin surface temperature, (d) detected facial landmarks, and (e) selected sROIs.
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seven sROIs considering the distribution of blood vessels, skin thickness, skin surface temper-
ature, and the area of sROIs on the face.

In this paper, the facial sROIs are detected and tracked using MediaPipe Face Mesh.32

MediaPipe Face Mesh utilizes machine learning techniques to infer 3D surface geometry, ena-
bling precise estimation of 468 3D facial landmarks. Notably, it achieves the detection of facial
landmarks by leveraging only a single camera input, eliminating the need for a specialized depth
sensor. Due to the lightweight model architecture of the solution, the detection speed is also very
fast. The sequence number of facial landmarks used to detect seven sROIs is shown in Table 1.

2.2 Coarse HR Estimation
To calculate the SNRs of the raw signals obtained from the sROIs, the HR needs to be known. In
Ref. 19, the raw g-channel signals obtained from the sROIs were added together to obtain a
coarse pulse signal and then a coarse pulse signal in the time domain was converted into the
frequency domain, and finally, the peak in the frequency domain was taken as the coarse
HR. However, along with the movement of subjects, there will be noises with high energy
in the coarse pulse signal, so the error between the coarse HR and the ground truth HR will
be increase, and finally the appropriate weights cannot be obtained. In this paper, the limitation
of Ref. 19 is overcome by utilizing POS(CbCr) with noise removal capability to calculate the
coarse HR.

First, seven raw signals ŝci ðtÞ are obtained from the selected seven sROIs using spatial
averaging

EQ-TARGET;temp:intralink-;e001;114;270ŝci ðtÞ ¼
P

x;y∈ΩsROI
i

Pc
i ðx; y; tÞ

jΩsROI
i j ; c ∈ fr; g; bg; (1)

where c represents the channel of the frame, Pc
i ðx; y; tÞ is the pixel value at the position (x; y) of c

channel at time t in the i 0th sROI, ΩsROI
i is the area of the i 0th sROI, and ŝci ðtÞ represents the raw

signal of c channel for i 0th sROI.
Next, the raw signals obtained from the sROIs are added together to obtain the coarse pulse

signal of the c channel ŝcðtÞ, as follows:

EQ-TARGET;temp:intralink-;e002;114;166ŝcðtÞ ¼
X7
i¼1

ŝci ðtÞ: (2)

And then, POS(CbCr) is applied to ŝcðtÞ to obtain a noise-removed coarse pulse signal pðtÞ.
POS(CbCr) comprises three steps: temporal normalization, projection, and alpha-tuning. The
temporal normalization can be accomplished using the following equation:

Table 1 The sequence number of facial landmarks used to detect sROIs.

sROI Sequence number of facial landmarks

I 67, 297, 334, 105

II 111, 143, 35, 31, 228, 229, 230, 231, 232, 233, 47, 100, 101, 117, 340,
372, 265, 261, 448, 449, 450, 451, 452, 453, 277, 329, 330, 346

III 214, 212, 36, 101, 346, 411, 434, 432, 266, 330

IV 245, 233, 47, 100, 101, 36, 212, 186, 165, 102, 198, 174,
465, 453, 277, 329, 330, 266, 432, 410, 391, 331, 420, 399

V 193, 417, 465, 399, 344, 115, 174, 245

VI 214, 212, 186, 61, 43, 204, 211, 170, 169, 135, 138,
434, 432, 410, 291, 273, 424, 431, 395, 394, 364, 367

VII 204, 211, 170, 140, 171, 175, 396, 369, 395, 431, 424
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EQ-TARGET;temp:intralink-;e003;117;736Xc
nðtÞ ¼

ŝcðtÞ
μðŝcðtÞÞ ; (3)

where Xc
nðtÞ represents temporally normalized signal of the c-channel and μð·Þ denotes the aver-

age operator that calculates the average value. The projection step involves projecting the tem-
porally normalized RGB signals onto the CbCr-plane in the YCbCr color space, which is
expressed by the following equation:

EQ-TARGET;temp:intralink-;e004;117;654SðtÞ ¼ U · Xc
nðtÞ; (4)

where U ¼ ðð−0.168;−0.331; 0.499ÞT; ð0.499;−0.418;−0.081ÞTÞT is a projection matrix and
SðtÞ ¼ ðspðtÞ, smðtÞÞT ∈ R2×N (N being the total number of frames) represents the result of pro-
jecting Xc

nðtÞ onto the CbCr-plane. The noise removed coarse pulse signal pðtÞ is obtained
through α-tuning, as depicted in the following equation:

EQ-TARGET;temp:intralink-;e005;117;580pðtÞ ¼ spðtÞ þ αsmðtÞ with α ¼ σðspðtÞÞ
σðsmðtÞÞ

; (5)

where σð·Þ means the standard deviation operator.
Finally, the pðtÞ in the time domain is transformed into the frequency domain signal by

Fourier transform, and the highest peak corresponding frequency fcHR is found within the range
of (0.7 Hz, 4 Hz).

2.3 Weighting Scheme
Every part of the face contains a distinct amount of pulse information, so different weights need
to be applied to each part.

In this paper, a novel weighting method is proposed, which adaptively assigns positive or
negative weights to sROIs using SNR. The coarse HR calculated in Sec. 2.2 is used to calculate
SNRs of the raw g-channel signals obtained from each sROI. The equation for calculating SNR
of the i 0th sROI (SNRi) in this paper is as follows:

EQ-TARGET;temp:intralink-;e006;117;399SNRi ¼ 10log10

� P
4
f¼0.7ðUðfÞhiðfÞÞ2P

4
f¼0.7ðð1 − UðfÞÞhiðfÞÞ2

�
; (6)

where hiðfÞ represents the spectrum of the input signal (where f denotes frequency) obtained
from i 0th sROI and UðfÞ is a binary template window with two values: 1 and 0. A value of 1
indicates that the frequency falls within two specific windows: one window is near the funda-
mental frequency of fcHR(i.e., [f

c
HR − 0.1, fcHR þ 0.1]), whereas the other window is near the first

harmonics (i.e., [2fcHR − 0.2, 2fcHR þ 0.2]). A value of 0 indicates that the frequency falls outside
of these two frequency windows.

The weights used in this paper are calculated as follows:

EQ-TARGET;temp:intralink-;e007;117;274h ¼ 1

7

X7
i¼1

SNRi − x1

�
1

7

X7
i¼1

SNRi −min
i

SNRi

�
; (7)

EQ-TARGET;temp:intralink-;e008;117;219ŵi ¼ SNRi − h; (8)

EQ-TARGET;temp:intralink-;e009;117;202wi ¼
�
ŵi ; ŵi ≥ 0

x2 · ŵi ; ŵi < 0;
(9)

where SNRi is the SNR of the raw g-channel signal obtained from the i 0th sROI [see Eq. (6)];
minðÞ is a minimum operator. In addition, h represents a threshold value used to determine
whether the weight should be positive or negative and wi is the weight assigned to the i 0th
sROI. In this paper, we assign x1 a value of 0.25 and x2 a value of 0.2 based on the connection
between the variables (x1 and x2) and SNR discussed in Sec. 4.

Finally, the weights are applied to the raw signals ŝci ðtÞ obtained from the sROIs to obtain the
pulse signal scðtÞ, as follows:
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EQ-TARGET;temp:intralink-;e010;114;736scðtÞ ¼
X7
i¼1

ŝci ðtÞ · wi: (10)

3 Materials

3.1 Self-Collected Database
Thirty volunteers (17 males and 13 females) aged between 23 and 40 years participated in the
data collection. All volunteers certified that they were healthy and received an explanation of the
experimental tasks while they signed an informed consent form before starting to collect the data.

During data collection, the volunteers were required to maintain a steady state, and the dis-
tance between the volunteers and the camera was about 0.8 m. Awebcam (Logitech C922) was
used to record the facial videos with a duration of 30 s, a frame rate of 30 fps, and a resolution of
1920 × 1080 while ground truth pulse signals were recorded using a finger-clip pulse oximeter
(Cofoe, Shenzhen, China). The facial skin surface temperature for each volunteer was also
recorded using an infrared thermal imager (Micro-Epsilon, Germany). Five sets of data were
collected from each volunteer, for a total of 30 × 5 ¼ 150 sets of data.

3.2 Public Database PURE
A total of 10 volunteers (8 males and 2 females) took part in the data collection under the 6
different states [steady, talking, slow translation, fast translation, small rotation (about 20 deg),
and medium rotation (about 35 deg)]. A camera (eco274CVGE) was used to record facial videos
with a frame rate of 30 fps and a resolution of 640 × 480 within about 1 min while the ground
truth pulse signals were collected using the finger clip pulse oximeter (pulox CMS50E). The
distance between the volunteer and the camera was about 1.1 m.

4 Results
In this paper, the quality of the raw signal obtained by the proposed method is evaluated on the
self-collected database and the public database PURE, taking the SNR as the evaluation index.
The quality of the raw signals obtained from the sROIs selected in this paper is compared. I*, II*,
III*, IV*, V*, VI*, and VII* represent the methods used to extract raw signals from their cor-
responding sROIs. 7-sROI refers to the method described in Sec. 2.2 for obtaining the coarse raw
signal. Furthermore, in terms of the quality of the pulse signal, the proposed method is compared
with the four methods: the first uses the whole face as the ROI (WH); the second uses the facial
skin region as the ROI; the third obtains according to a goodness metric (GM);19 and the fourth
obtains by adopting the FW.29 When the whole face is used to obtain the pulse signal, the region
whose width of the detected rectangular face region is reduced by 0.6 times is set as the ROI.
When the facial skin region is used to obtain the raw signal, in the region whose width of the
detected rectangular face region is reduced by 0.6 times, the skin region detected by human skin
color clustering technology33 is set as the ROI.

Table 2 and Fig. 2 show the SNR results of the signals obtained by different methods for
videos with different resolutions in the self-collected database. Here, the videos with resolutions
of 1280 × 720, 640 × 480, and 320 × 240 were made by resizing the videos with a resolution of
1920 × 1080 in the self-collected database. As shown in Table 2 and Fig. 2, for the self-collected
database, the proposed method has the best SNR, followed by GM and FW.

Table 2 The SNR results of the compared methods on the self-collected database.

I* II* III* IV* V* VI* VII* 7-sROI WH skin GM FW Ours

1920 × 1080 1.57 1.41 0.94 1.52 2.46 −1.73 −1.86 2.94 2.00 2.92 3.61 3.75 4.97

1280 × 720 1.47 1.21 0.58 1.29 1.79 −2.03 −2.40 2.79 1.51 2.43 3.51 3.59 4.74

640 × 480 −0.35 −2.15 −3.03 −0.21 −0.17 −4.18 −3.05 0.25 −0.33 1.02 1.29 1.16 2.68

320 × 240 −1.96 −3.34 −3.59 −1.60 −1.69 −4.59 −3.79 −0.70 −1.93 −1.07 0.06 0.00 1.21
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The SNR results of the signals obtained by the compared method for the public database
PURE are shown in Table 3 and Fig. 3. As shown in Table 3 and Fig. 3, for the public database
PURE, as well as the self-collected database, the proposed method also has the best SNR, fol-
lowed by GM and FW.

In this paper, a comparative analysis between the qualities of the raw signals obtained from
sROIs is conducted. To this end, we first prepare a data matrix with size of M × 7 in which M
denotes the number of samples and each element denotes the ordinal number of SNR in descend-
ing order. Then, we calculate the percentage of each ordinal number in every sROI (i.e., column
of the data matrix aforementioned) and show those values for two databases in Figs. 4(a) and
4(b), respectively. For example, “1st” represents the percentage that takes the maximum value in
SNRs of the seven SROIs, and “7th” represents the percentage that takes the minimum value. It
can be seen from Tables 2 and 3 and Figs. 2–4 that V, IV, and I-sROIs have good SNRs for
self-collected database with the resolution of 1920 × 1080, and IV, III, and I-sROIs have good
SNRs for public database PURE.

Table 4 presents a comparison of evaluation metrics for the HR measurement performance of
the different methods. The time-domain g-channel signal obtained by the compared method is
transformed to the frequency domain by Fourier transform and then the frequency corresponding
to the peak is selected from 0.7 to 4 Hz to calculate the HR. Representative statistical metrics,
including mean error (ME), mean absolute error (MAE), root mean squared error (RMSE), pre-
cision (P%), and Pearson correlation coefficient (r), are utilized to assess the accuracy of HR
measurement in comparison to the ground truth HR. The formula for calculating ME, MAE,
RMSE, P%, and r is given in Refs. 34 and 35. As indicated in Table 4, the proposed method
demonstrates the highest performance for HR measurement.

Figure 5 shows the relationship between two variables (x1; x2) and SNR in the proposed
method. As shown in Fig. 5, the average SNRs of the signals obtained from the two databases

Fig. 2 The boxplots of the SNR results of the compared methods for the self-collected database.
(a) 1920 × 1080, (b) 1280 × 720, (c) 640 × 480, and (d) 320 × 240.

Table 3 The SNR results of the compared methods for the public database PURE.

I* II* III* IV* V* VI* VII* 7-sROI WH skin GM FW ours

0.86 −0.28 1.44 1.26 0.20 −1.95 −1.96 2.79 −1.25 2.18 3.44 3.26 4.03

Fig. 3 The boxplots of the SNR results of the compared methods for the public database PURE.
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appears to be the maximum value around (ðx1; x2Þ ¼ ð0.25; 0.2Þ, and the farther away from
(0.25, 0.2), the smaller the average SNR. And while x1 changes, SNR does not change so much.
However, for x2, we can see a slight change of SNR at (0,0.5) but a significant change at (0.5,2).

In Fig. 6, for sample data in the medium rotation state from the public database PURE, we
show the iPPG signal obtained by combining the proposed method and SB-CWT(CbCr),34,35 as
well as the PPG signal. It is not difficult to see that the peak positions of the PPG signal and the
iPPG signal are almost exactly the same.

5 Discussion
Based on the analysis the distribution of facial blood vessels and the SNR of the sROIs, we
utilized adaptive weights for the sROIs to conduct spatial averaging, resulting in enhanced raw
signal quality during the preprocessing step. The comparison between previous spatial averaging
methods based on weights,19,29 spatial averaging methods based on single ROI selection, and the
method proposed in this paper demonstrated the superior performance of our method in enhanc-
ing the quality of the raw signal, leading to certain improvement in subsequent HR measurement.

Table 4 Comparison between evaluation metrics of HR measurement performance of the com-
pared methods

I* II* III* IV* V* VI* VII* 7-sROI WH skin GM FW ours

Self-collected
database

ME (bpm) 1.03 3.46 2.33 1.15 0.27 6.25 5.34 0.89 1.38 −0.25 0.95 −0.25 −0.10

MAE (bpm) 2.30 4.51 2.73 1.69 0.99 7.71 6.71 1.45 2.03 0.59 1.38 0.47 0.43

RMSE (bpm) 7.83 12.57 8.57 6.01 3.70 14.97 14.91 6.46 7.21 1.38 6.43 1.22 1.02

P% (%) 92.67 86.67 88.67 94.00 97.33 66.67 78.67 97.33 92.00 98.00 97.33 98.67 100.00

r 0.75 0.38 0.74 0.86 0.94 0.23 0.27 0.83 0.79 0.99 0.83 0.99 0.99

PURE ME (bpm) 4.19 6.11 2.47 3.93 5.81 7.00 8.75 1.98 3.61 1.56 1.93 1.82 0.49

MAE (bpm) 4.79 7.16 3.07 4.56 6.51 8.86 9.28 3.11 7.44 3.60 3.05 2.91 1.47

RMSE (bpm) 12.52 17.70 11.84 12.75 18.74 18.73 20.66 10.84 17.29 9.80 10.83 10.77 2.23

P% (%) 84.21 82.46 91.23 91.23 87.72 64.91 75.44 92.98 75.44 92.98 92.98 94.74 98.25

r 0.82 0.59 0.82 0.80 0.51 0.55 0.43 0.85 0.59 0.88 0.85 0.85 0.99

Fig. 4 Illustration of the sROI with good SNR varying over different samples. (a) Self-collected
database and (b) PURE.
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In Ref. 19, the contribution of the signal with low SNR was mitigated by assigning a small
weight, not less than zero, to the sROI exhibiting low SNR. However, in our method, the signal
with low SNR was considering as noise, and a negative weight was adaptively assigned to the
corresponding sROI. In fact, the phase difference of the pulse signals acquired at any two points
within the face is almost zero.19 Therefore, assigning a negative weight to the raw signal of the
sROI with relatively low SNR could lead to the loss of pulse signal in the resulted raw signal
when combined with the raw signals of other sROIs during the weighting process. Alternatively,
in most cases, the noises caused by motion and illumination change in the sub-ROIs may exhibit
correlation.36,37 Therefore, employing a negative weight for the raw signal of the sROI with rel-
atively low SNR during spatial averaging can achieve a greater reduction in noise compared to
the loss of the pulse signal, resulting in an overall improvement in raw signal SNR.

Different methods were also compared at various resolutions of video. As shown in Table 2
and Fig. 2, for all the methods compared, the higher the resolution of the video, the higher the
SNR. In addition, although there was a little difference in SNR for the resolution of 1920 × 1080

Fig. 6 The PPG signal and the iPPG signal obtained through combining the proposed method with
SB-CWT(CbCr) for sample data in the medium rotation state from the public database PURE.

Fig. 5 The relationship between the variables and the SNR. (a) Self-collected database and
(b) PURE.
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and 1280 × 720, there was a certain degree of difference between 1280 × 720 and 640 × 480 and
between 640 × 480 and 320 × 240. Therefore, considering both computational efficiency and
signal quality, the result indicated that the resolution of 1280 × 720 was the optimal choice for
the measurement of physiological parameters based on iPPG under the considered conditions.
Moreover, it can be seen that the proposed method can get higher quality raw signals than the
compared method at four resolutions.

Our proposed weight-based spatial averaging method adeptly performed simultaneous sig-
nal emphasis and noise cancellation, effectively enhancing the quality of the raw signal.
Consequently, this method offers the advantage of solely utilizing the facial skin region to reduce
noise to some extent, distinguishing it from previous methods37–39 that relied on non-skin regions
for noise elimination. Furthermore, significant effort of our study is devoted to enhancing the
quality of the raw signals in RGB channels, allowing the proposed method to be freely combined
with existing iPPG-based HR and HRV measurement methods. While offering these advantages,
the proposed method also exhibits some limitations. The proposed method relies on the coarse
HR estimation to determine the weights, so the accuracy of the coarse HR may affect the sub-
sequent measurement of physiological parameters. Indeed, the POS(CbCr) used for coarse HR
measurement in this paper was robust to motion and illumination change, but when the intensity
of noise is strong, the error of coarse HR measurement may increase. It may also be necessary to
redetermine the optimal values of the important factors x1 and x2 in Eqs. (7)–(9). In this study, the
comparative optimal (x1; x2) is determined by employing both the public database PURE and the
self-collected database.

To measure HR and HRV more accurately, raw signals of good quality need to be extracted.
The proposed method shows better performance than the other compared methods for the self-
collected database and the public database PURE. But both databases were collected under con-
ditions where obstacles, such as motion or illumination change, were not severe. Therefore, in
order for our proposed spatial averaging method to be generally applied to the preprocessing step
of iPPG-based methods, it needs to be fully investigated by more public databases that consid-
ered more practical situations. That is, the improvement of the accuracy of the coarse HR esti-
mation and the optimization of the parameter setting for determining the weights should be
investigated. We will further study this in the future.

6 Conclusion
This paper proposed a method to obtain high-quality pulse signals in which facial ROI was di-
vided into seven sROIs by considering the distribution of blood vessels, skin thickness, and skin
surface temperature in the face and used adaptive weights. The proposed method could obtain
better quality pulse signals than the existing methods at various resolutions of the videos and
under various motion conditions by fusing pulse information from different parts of the face more
effectively. The proposed method was able to provide the pulse signal with large SNR, which will
be of great help for the easier, more effective, and more accurate measurement of physiological
parameters and predict and diagnose a person’s heart vascular disease using iPPG.
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