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ABSTRACT. The task of classifying small objects is still challenging for current deep learning
classification models [such as convolutional neural networks (CNNs) and vision
transformers (ViTs)]. We believe that these algorithms are not designed specifically
for small targets, so their feature extraction abilities for small targets are insufficient.
To improve the classification capabilities of CNN-based and ViT-based classification
models for small objects, two multidomain feature fusion (MDFF) frameworks are
proposed to increase the amount of feature information derived from images and
they are called MDFF-ConvMixer and MDFF-ViT. Compared with the basic model,
the uniquely added design includes frequency domain feature extraction and MDFF
processes. In the frequency domain feature extraction part, the input image is first
transformed into a frequency domain form through discrete cosine transform (DCT)
transformation and then a three-dimensional matrix containing the frequency domain
information is obtained via channel splicing and reshaping. In the MDFF part, MDFF-
ConvMixer splices the spatial and frequency domain features by channel, whereas
MDFF-ViT uses a cross-attention mechanism to fuse the spatial and frequency
domain features. When targeting small target classification tasks, these two frame-
works obviously improve the utilized classification algorithm. On the DOTA dataset
and the CIFAR10 dataset with two downsampling operations, the accuracies of
MDFF-ConvMixer relative to ConvMixer increase from 87.82% and 62.14% to
90.14% and 66.00%, respectively, and the accuracies of MDFF-ViT relative to the
ViT increase from 79.22% and 36.2% to 88.15% and 59.23%, respectively.
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1 Introduction
Small target recognition technology is very important in the fields of medical image analysis,
security systems, video surveillance and tracking, automatic driving, etc. Regardless of whether
it involves traditional machine learning methods or recognition algorithms based on deep
learning; however, the classification effect achieved for small targets is still not satisfactory.1

Compared with regular-sized targets, small targets usually have only dozens of pixels or a few
pixels and present problems, such as low resolution and a lack of image information, so the
feature expression abilities of small targets are weak.2 Deep learning methods have achieved
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impressive results on regular-sized targets.3 Convolutional neural networks (CNNs) generally use
methods such as network deepening and feature multiplexing to enhance the classifier’s ability to
extract spatial features from the target.4,5 ResNet6 uses the idea of residual learning. On the
basis of VGG19,7 a residual unit is added through a shortcut to solve the degradation problem
of the deep network so that the network becomes deeper and can extract deeper features.
However, deeper networks are more likely to lead to the loss of small target features.
Although DenseNet8 establishes dense connections between different layers, reuses features
between the front and rear layers, and performs well on large targets, because small targets carry
less information, it is easy to cause overfitting by directly using DenseNet to deepen the network.
Xu et al.9 proposed a new target feature extraction approach, which uses adaptive channel prun-
ing to reshape images in the frequency domain and then uses conventional CNNs for classifi-
cation. This method uses the frequency domain features of the target and its final effect is better
than that of the original CNN method. However, simply using frequency domain features and
pruning leads to incomplete feature extraction for small objects, so this method is still not suitable
for small object classification. Through the learning processes of the above methods and our
understanding of small target features, we believe that the feature extraction ability of a model
for small targets can be enhanced by introducing a combination of frequency domain features and
spatial domain features. Therefore, a spatial and frequency domain feature fusion method [multi-
domain feature fusion (MDFF)] based on data enhancement is proposed in this paper, which
enhances the importance of the frequency domain features to the classifier, enriches the effective
features of small targets, and improves the model’s small target recognition ability. Based on this
method, two recognition frameworks [MDFF-ConvMixer and MDFF-vision transformer (ViT)]
are designed. On the DOTA dataset and the CIFAR10 dataset with two downsampling opera-
tions, we verify that the classifiers constructed by these two frameworks achieve improved
recognition performance for small objects. For the small target classification task, this paper is
a new attempt to fuse spatial and frequency domain features.

2 Related Works
The main work of this paper is to carry out research on classification and recognition technology
for small targets. The research idea is to realize the extraction and fusion of the spatial and fre-
quency domain features of targets based on the structures of ConvMixer and a vision transformer
(ViT). In this chapter, we focus on some related work.

2.1 ViTs
In recent years, due to the success of transformers in the field of natural language processing
(NLP), nonconvolution models that only rely on transformers have gradually become the most
advanced algorithms in the field of computer vision. The transformer structure with attention
proposed by Vaswani et al.10 has achieved good results. The bidirectional encoder representations
from transformers (BERT) method proposed by Devlin et al.11 uses a classification (CLS) token
to aggregate the classification information of the entire token to reduce the computational com-
plexity of the transformation algorithm. Later, a self-attention technique was proposed by Parmar
et al.12 This method focuses only on the local neighborhoods of pixels, which enables the appli-
cation of transformers in vision tasks. The ViT13 borrows from previous work and encodes
an image into several tokens with location information; this was the first approach to match or
even surpass CNNs in terms of performance on vision tasks with a transformer-based algorithm.
Cross ViT14 utilizes a dual-path structure to improve the effect of the ViT on multiscale features.
Based on the above algorithms, we propose a MDFF method for feature augmentation to better
utilize ViTs for the visual representation of small objects.

2.2 CNNs
Although ViTs can outperform CNNs on some tasks with additional pretraining on big data, the
lower dataset requirements and faster training speeds of CNNs make them some of the dominant
frameworks for vision tasks. A large number of scholars have conducted in-depth research
on CNNs. For example, ResNet6 uses the idea of residual learning to deepen convolutional
networks, and DenseNet8 further reduces the number of required model parameters by reusing
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features. These improvements all provide CNNs with more powerful classification capabilities.
ConvMixer15 was inspired by the ViT. It directly operates on patches and performs the convo-
lution operation, which further improves the classification ability of the convolutional model.
However, the above methods are not suitable for small object classification because when the
object sizes are too small, deeper networks with more spatial convolutions tend to lose features
more easily. Based on the above considerations, in this paper, the frequency domain features are
embedded in a ConvMixer-based MDFF framework to achieve feature enhancement.

2.3 Frequency Domain Feature Extraction
The frequency domain representations of images contain rich information and making full use of
this information can improve a computer’s understanding of various image processing tasks.
Hsu et al.16 was the first to use the Mandala transform to identify targets. Shen and Sethi17

directly extracted low-level frequency domain features from images to detect regions of interest
and edges. Both Ehrlich and Davis18 and Gueguen et al.19 skipped the JPEG decoding step and
directly used frequency domain information for learning. Ehrlich and Davis18 proposed a general
learning algorithm in the JPEG transform domain for interconversion between spatial and
frequency domain networks, whereas Gueguen et al.19 used an intermediate JPEG codec
module to extract frequency domain features to train a CNN model for image classification.
Gueguen et al.19 also considered DCT to be an alternative convolution. Xu et al.9 analyzed
spectral bias from the perspective of the frequency domain, proposed a learning-based channel
pruning algorithm to prune frequency components that are of little use and used frequency
domain information as the input of commonly used neural networks. These methods only con-
sider the frequency domain features and do not consider the fusion of frequency domain features
and spatial domain features. The work in this paper is an attempt to fuse the spatial and frequency
domain features.

3 Methodology
Our feature fusion method is designed on ConvMixer and ViT models for small object classi-
fication. Therefore, this chapter first briefly introduces the ConvMixer and ViT models and
then describes our proposed algorithm frameworks (MDFF-ConvMixer and MDFF-ViT) in
detail.

3.1 ViT and ConvMixer Frameworks
AViT splits an entire image into small image patches and then converts these small patches into
linear embedding sequences via linear projection.13 Since this splitting process loses the position
information of the image block, which is indispensable in vision tasks, the ViT adds a position
embedding to each token. Similar to BERT’s CLS token, an additional CLS token is added to the
front of each sequence to facilitate the final classification step. All tokens of a sequence are fed
into multiple transformer encoders as inputs, but the final classification process uses only the
CLS tokens, not all tokens, because after multiple encoding iterations, the CLS tokens already
contain important information from other tokens. A transformer encoder consists of multiple
stacked blocks, each of which consists of multiheaded self-attention12 and a multilayer percep-
tron (MLP).20 It is worth noting that since CLS tokens can contain rich feature information, we
try to achieve joint feature enhancement by exchanging the CLS tokens and branch tokens of
different domain features.

ConvMixer consists of a patch embedding block and multiple repeated fully convolutional
blocks. Although ConvMixer’s patch embedding block is similar to the ViT’s linear projection
function, it is implemented through a 2D convolution operation. Each fully convolutional block
of ConvMixer consists of grouped convolution (the number of groups equals the number of
channels) and point convolution (the convolution kernel has a size of 1 × 1). The group-con-
volved feature map and the point-convolved feature map undergo residual learning. A pooling
and normalization layer is located after each convolution operation to reduce the computational
cost of the model. Although Trockman and Kolter15 believed that ConvMixer is similar to the ViT
in terms of its idea, its architecture is more similar to those of CNNs, such as ResNet. Due to
the superior performance of ConvMixer on small target recognition tasks, this paper uses the
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ConvMixer model to improve the proposed approach. While adding frequency domain features,
we design a feature fusion recognition framework based on ConvMixer by performing cross-
domain feature splicing according to the channel dimension.

Aiming at the difficulty of small target feature extraction, we introduce frequency domain
features and use MDFF to enhance the classification ability of the model. This design idea broad-
ens the feature extraction channels, rather than only mining features based on depth, so it is more
suitable for the extraction of small target features.

3.2 Frequency Domain Feature Extraction
For small targets with insufficient spatial information, common classifiers do not perform well.
For example, CNNs and ViTs, similar to the human eye, tend to pay more attention to infor-
mation such as the textures and positions of images when performing classification, which are all
spatial features. For objects with higher resolutions and larger sizes, a classifier can achieve better
classification results by using only spatial features. For small targets, the advantages of these
classifiers, such as their deeper networks and extra spatial convolutions, do not improve the
classification effect but rather interfere with the extraction of identifiable features. For this reason,
we propose an MDFF method that attempts to increase the frequency domain features to achieve
feature enhancement, which is accomplished by expanding the feature domain rather than adding
depth features. The frequency domain feature extraction method for the deep learning network is
shown in Fig. 1.

As shown in the Fig. 1, the resized and cropped RGB image is denoted as xspa, and the image
x2spa is obtained by performing upsampling twice using the bilinear interpolation method. x2spa
obtains a one-dimensional matrix of the Y channel (Y−x2spa) through DCT transformation, and
xspa obtains one-dimensional Cb and Cr matrices (Cb−x2spa, Cr−x2spa) through DCT transforma-
tion. When performing DCT transformation, the input image is divided into multiple 8*8 matri-
ces, DCT transformation is performed on each matrix, and a frequency coefficient matrix is
obtained after the transformation. The two-dimensional DCT coefficients with the same fre-
quency are divided into the same group to form a channel. Later, reshaping and concatenation
are used to deform the Y, Cb, and Cr matrices into tractable forms for normalization. Finally, the
matrices are reshaped into a three-channel image, denoted as xfre, to facilitate the subsequent
feature extraction and fusion processes.

3.3 Spatial and Frequency Domain Feature Fusion
To study the small target recognition effect attained after adding frequency domain features,
we improve the feature fusion abilities of two different recognition models, including the
state-of-the-art CNN-based ConvMixer model and the classic transform-based ViT classification
model. We refer to the improved recognition frameworks as MDFF-ConvMixer and MDFF-ViT,
respectively.

Fig. 1 Frequency domain feature extraction.
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3.3.1 MDFF-ConvMixer

As shown in Fig. 2, the input image is subjected to simple image preprocessing techniques (such
as resizing, cropping, and rotation) and frequency domain feature extraction (in Sec. 3.2) to
obtain the target spatial image ∈ Rc×n×n and the frequency domain image xfre ∈ Rc×n×n. xspa
and xfre obtain the spatial feature block yspa ∈ Rh×ðnpÞ×ðnpÞ and the frequency domain feature block

yfre ∈ Rh×ðnpÞ×ðnpÞ, respectively, through their patch embedding modules. Each patch embedding
module here is composed of a convolutional layer, an activation function and a normalization
layer.15 The convolutional layer’s kernel size ¼p1, the stride ¼p1, and p1 is the patch size. The
transformation process is shown in the following equations:

EQ-TARGET;temp:intralink-;e001;117;432yspa ¼ BNðσfConvcin→hðxspaÞgÞj; (1)

EQ-TARGET;temp:intralink-;e002;117;396yfre ¼ BNðσfConvcin→hðxfreÞgÞ: (2)

The feature blocks obtained by yspa and yfre through overlapping ConvMixer layers are

denoted as ymspa ∈ Rh×ðnpÞ×ðnpÞ and ymfre ∈ Rh×ðnpÞ×ðnpÞ, respectively, where m is the number of over-
lapping ConvMixer layers. Each ConvMixer layer is composed of depthwise convolution and
pointwise convolution.15 Depthwise convolution is actually a grouped convolution with the num-
ber of groups equal to the number of channels, whereas pointwise convolution is a 1 × 1 point
convolution. An activation function and a normalization layer are located after each convolution.
Before and after performing depthwise convolution, the features are connected by their
residuals,15 as shown in Eqs. (3)–(6). The depthwise convolution and pointwise convolution
operations are shown in Eqs. (7) and (8), respectively

EQ-TARGET;temp:intralink-;e003;117;276ŷtspa ¼ BNðσfDepConvh→hðyt−1spa ÞgÞ þ yt−1spa ; (3)

EQ-TARGET;temp:intralink-;e004;117;239ŷtspa ¼ BNðσfPotConvh→hðŷtspaÞgÞ; (4)

EQ-TARGET;temp:intralink-;e005;117;220ŷtfre ¼ BNðσfDepConvh→hðyt−1fre ÞgÞ þ yt−1fre ; (5)

EQ-TARGET;temp:intralink-;e006;117;202ŷtfre ¼ BNðσfPotConvh→hðŷtfreÞgÞ; (6)

EQ-TARGET;temp:intralink-;e007;117;182DepConv ¼ Convðstride ¼ p2; kernel ¼ p3Þ; (7)

EQ-TARGET;temp:intralink-;e008;117;164PotConv ¼ Convðkernel ¼ 1Þ: (8)

Among them, the initial values of yt−1spa and yt−1fre are yspa and yfre, respectively; t is the variable
representing the number of stacking iterations; and the value range is 1 ≤ t ≤ M. p2 represents
the stride parameter in the depthwise convolution, which is determined by the sizes of the input
and output. The function of p2 is to ensure that the size of each feature remains unchanged before
and after the convolution operation.21 p3 represents the kernel size in the depthwise convolution,
which is generally 7. The kernel size of point convolution is set to 1.

Fig. 2 MDFF-ConvMixer flow chart.
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After obtaining the spatial domain depth feature yMspa and the frequency domain depth

feature yMfre, the fusion feature z ∈ Rð2�hÞ×ðnpÞ×ðnpÞ is obtained through channel splicing, as Eq. (11)
shows

EQ-TARGET;temp:intralink-;e009;114;696z ¼ ½yMspakyMfre�: (9)

The feature z can yield the output category result after going through the fully connected
layer. And the loss function of MDFF-ConvMixer is calculated using cross-entropy and is
defined as

EQ-TARGET;temp:intralink-;e010;114;635Loss ¼ −
XM

c¼1

qic logðpicÞ; (10)

where M represents the number of categories. qic is an sign function that takes a value of 0 or 1.
If the true category of sample i is c, it takes the value of 1; otherwise, it takes the value of 0.
The probability pic represents the likelihood of sample i belonging to category c, which is
obtained by inputting the feature z into a fully connected layer.

To study the best location for fusing the spatial and frequency domain features, we make
attempts with different strategies, such as the following.

MC-strategy1: fuse xspa and xfre before extracting features;

MC-strategy2: fuse image patches yspa and yfre before extracting features;

MC-strategy3: use attention mechanism to perform feature fusion on yMspa and yMfre after feature
extraction;

MC-strategy4: plus the last two outputs of spa-branch and fre-branch instead of fusing
features, which means combining outputspa and outputfre to get a new output, expressed
in the formula as: outputnew ¼ outputspa þ outputfre;

MC-strategy5: take the element-wise maximum of the outputs from the spa-branch and
fre-branch to get a new output: outputnew ¼ maxðoutputspa; outputfreÞ.

Through comparative experiments, we find that the optimal feature fusion method for the
ConvMixer model performs feature splicing before the fully connected layer. We believe that this
is because the fusion mechanisms of MC-strategy1 to MC-strategy3 may destroy the location
information contained in airspace features, and MC-strategy4 to MC-strategy5 fail because the
meanings of loss in the airspace and frequency domains are quite different and their loss are
difficult to fuse. Detailed ablation experiments can be found in Sec. 4.3.

3.3.2 MDFF-ViT

As shown in Fig. 3, the input image is subjected to simple image preprocessing technology to
obtain the spatial domain image xspa, and then the frequency domain image xfre is obtained
through frequency domain feature extraction (shown in Sec. 3.2). Linear projection is used
to process xspa and xfre to obtain two different tokens (Tspa and Tfre, respectively). Tspa and
Tfre are processed through the token fusion module to obtain two fusion features Tfreþspa and
Tspaþfre, respectively. It should be noted that the input of the token fusion module includes two
tokens, and the output also contains two tokens. A token can be split into a CLS token and
multiple patch tokens, where the CLS token contains most of the information of the entire token.
Tcls
freþspa contains most of the information in the fusion feature Tfreþspa, and Tcls

spaþfre contains most

of the information in the fusion feature Tspaþfre. Our processing approach sends Tcls
freþspa and

Tcls
spaþfre to 2 separate MLP heads and finally performs linear fusion on the two losses.

Effective feature fusion is the key to learning multidomain feature representations. After
testing several strategies, such as self-attention feature fusion, simple token splicing and fusion,
etc. Fusion scheme details can be found in Sec. 4.3. We choose the token fusion module based
on the cross-attention mechanism and its design idea is inspired by Cross ViT.14 Each token
fusion module in MDFF-ViT consists of two parallel transformer encoders and a cross-attention
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mechanism. The two transformer encoders separately extract the spatial and frequency domain
features of the data, and the attention mechanism is mainly responsible for processing the feature

fusion part. The features obtained after the transformer encoder are denoted as T̂fre and T̂spa,
respectively, and they are cross-fused using the cross-attention mechanism. The following

describes the process of feature cross fusion, as shown in Eqs. (11)–(15). Taking T̂fre fusing

the information of T̂spa to obtain T̂freþspa as an example, T̂fre can be split into T̂cls
fre and T̂branch

fre ,

and T̂spa can be split into T̂cls
spa and T̂branch

spa :

EQ-TARGET;temp:intralink-;e011;117;324T̂fre ¼ ½T̂cls
frejT̂branch

fre �; T̂b
spa ¼ ½T̂cls

spajT̂branch
spa �: (11)

When calculating the QKV matrix, cross-attention can utilize different processing
methods.22 QKV matrix represents the query matrix, key matrix and value matrix proposed

in Ref. 10. As shown in Eq. (12), q is calculated through the linear projection of T̂cls
fre, k is calcu-

lated by the simple concatenation of the linear projection results of T̂cls
fre and T̂branch

spa , and the
calculation process of v is similar to that of k. The purpose of linear projection is to align the

dimensions of T̂cls
fre and T̂branch

spa to facilitate subsequent feature cross-fusion calculations. Linear
projection is achieved by adding several linear layers, and the linear projections in the spatial and
temporal domains are represented by the functions fspað·Þ and ffreð·Þ, respectively. The calcu-
lation equations of q, k, and v are as follows:

EQ-TARGET;temp:intralink-;e012;117;172q ¼ ffreðT̂cls
freÞWq; (12)

EQ-TARGET;temp:intralink-;e013;117;129k ¼ ½ffreðT̂cls
freÞkT̂branch

spa �Wk; (13)

EQ-TARGET;temp:intralink-;e014;117;101v ¼ ½ffreðT̂cls
freÞkT̂branch

spa �Wv: (14)

Among them, Wq, Wk, and Wv are learnable parameters.

Fig. 3 MDFF-ViT flow chart.
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After calculating the QKV matrix, the CLS token T̂cls
freþspa fused with spatial information

can be obtained. T̂cls
freþspa is aligned and spliced with T̂branch

fre through the backprojection function
gfreð·Þ to obtain the fused token, which is denoted as Tfreþspa. This is shown in the following
equation:

EQ-TARGET;temp:intralink-;e015;114;682Tfreþspa ¼ ½gfreðT̂cls
freþspaÞ

����Tbranch
fre �: (15)

The fusion of Tspa and Tfre is also a similar process. For better feature extraction and feature
fusion, the token fusion module needs to overlap R times.

Here, the feature cross-fusion process of MDFF-ViT is more complicated than that of
MDFF-ConvMixer. MDFF-ViT uses cross-attention for feature fusion, whereas MDFF-
ConvMixer uses simple channel concatenation for fusion. The reason for this design in this paper
is that the tokens in MDFF-ViT have location information, and the frequency domain features do
not destroy the location information of the spatial domain features during feature crossover;
thus, the fusion process is more sufficient. Subsequent experiments demonstrate that sufficient
feature fusion can achieve higher performance gains.

It should be noted that in the entire MDFF-ViT framework, the process leading up to the sum
of MLP heads is coherent. However, unlike the concatenation method employed in MDFF-
ConvMixer to merge spatial and frequency-domain features, we adopt a different approach in
MDFF-ViT. Instead, MDFF-ViT feeds the fusion results of the two feature layers (Tcls

freþspa,

Tcls
spaþfre) into two MLP layers separately. The MLP heads output two recognition scores derived

from the feature mappings, and the final fusion decision is obtained by summing the two
recognition scores. The loss function of MDFF-ViT is similar to that of MDFF-ConvMixer,
both utilizing cross-entropy for computation. However, due to the presence of an additional
MLP head in MDFF-ViT, the probability score calculation is diffient. The loss function of
MDFF-ViT is expressed as follows:

EQ-TARGET;temp:intralink-;e016;114;409Loss ¼ −
XN

c¼1

qic logðpic
spaþfre þ pic

freþspaÞ; (16)

where N represents the number of categories, and qic denotes the sign function, taking binary
values of 0 or 1. Specifically, qic takes the value of 1 if sample i belongs to the true category c,
otherwise it is set to 0. The probabilities pic

spaþfre and p
ic
freþspa represent the likelihood of sample i

belonging to category c. These two probabilities are obtained by passing the features Tcls
spaþfre and

Tcls
freþspa through two MLP heads separately.

3.4 Enhancement Analysis of Feature Representation
Our framework is not limited to the improvement of some special spatial models such as
ConvMixer and ViT. It can also be applied to enhance other spatial feature models easily, includ-
ing recognition methods based on contour features, such as (Misra, 2018),23 (Asem, 2018),24 and
(Saleem, 2019).25 Due to the significant differences between the spatial and frequency domain
features of small object, our improvement strategy can remarkably enhance the information con-
tent of the original features (spatial) by introducing frequency domain features. This naturally
leads to improved recognition performance.

The feature maps before and after feature fusion are shown in Fig. 4. xspa, yMspa, yMfre, and Z in
Fig. 4 represent the input RGB image, the spatial feature map, the frequency feature map, and the
fused feature map, respectively. For better visualization, all of them have been scaled to a size of
256 × 256. It can be intuitively observed that the frequency domain features enrich the infor-
mation content of the spatial domain features, which is the key to our model’s excellent
performance.

4 Experiments
In this section, we present experiments and their results to demonstrate the effectiveness of our
proposed method.
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4.1 Experiments Setup

4.1.1 Dataset

Our purpose is to conduct research on recognition technology for small objects with sizes
between 8*8 and 32*32. Due to the lack of such publicly available datasets, we use the down-
sampled DOTA dataset. The target areas marked by the DOTA dataset are cropped and down-
sampled to 1/4 of the original images, and the targets with pixel areas less than 32*32 are retained
as the classified dataset. The dataset composition is shown in Fig. 5. In the following, the original
dataset is recorded as Dota32×32, and the smaller target dataset obtained after continued down-
sampling of Dota32×32 is recorded as Dota32

2
×32

2
. These two datasets are subsequently used for

experiments to test the performance of the algorithm on small targets with different sizes.
The ratio of the training set to the test set is ∼5∶3. Dota32×32 has 6 types of positive samples
and 1 type of negative sample, for a total of 15,065 samples, and Dota32

2
×32

2
has the same break-

down. The training sets of Dota32×32 and Dota32
2
×32

2
are shown in the following figure. We also

utilized the publicly available dataset cifar1026 and downsampled it by 1/2 to meet the require-
ments of our research, referred to as cifar1032

2
×32

2
. In addition to Dota32×32, Dota32

2
×32

2
, and

cifar1032
2
×32

2
, we conducted experiments on the publicly available dataset Fashion-MNIST.27

4.1.2 Training and evaluation

When conducting control experiments, we set the same hyperparameters for the same set of
experiments. We run the experiments for 200 epochs on 2 pieces of 3080Ti GPUs. The optimizer
uses adaptive moment estimation (Adam), the default batch size is set to 64 (dynamically
adjusted to models), the initial learning rate is set to 0.0001, the learning rate decay coefficient
is 0.9, and the number of learning rate decay iterations is 20. The datasets are resized to
256 before being input into the classifier, and simple data enhancements such as flipping and

Fig. 4 Visualization feature maps of spatial, frequency, and fused features.

Fig. 5 Information of Dota32×32 and Dota32
2 ×

32
2
and picture examples of various samples.
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cropping are used. The convolutional models participating in the experimental comparison
include ResNet50, Desnet, HorNet,28 and ConvMixer, and the transformer models include
Deit,29 ViT-pre, ViT, Cross ViT-pre, Cross ViT, Swin-Transformer,30 and CSWin-Transformer.31

Among them, the patch embeddings of ViT-pre, ViT, Cross ViT-pre, Cross ViT, and MDFF-ViT
are all linear, the patch sizes of the ViTand MDFF-ViTare 16,13 the small patch size of Cross ViT
is 16, and the large patch size is 64.14 In the experiment, Deit’s teacher model is ResNet50, and
the patch size is 16.29 ConvMixer15 and MDFF-ConvMixer have 256 dimensions and depths of
24. We use the first accuracy attained on the test set as a model performance evaluation metric.

4.1.3 Training process

The training processes of MDFF ConvMixer and MDFF ViT are largely similar to the original
algorithms, both following an end-to-end approach. The only difference is that original
ConvMixer and ViT only require spatial domain images and labels as inputs during training,
whereas MDFF ConvMixer and MDFF ViT additionally require frequency domain images.
The frequency domain images are generated together with the dataloader when the dataset is
loaded, by using CPU. Therefore, our conversion method does not introduce any additional
GPU time. Moreover, the conversion of spatial domain images to frequency domain images
by the CPU is also fast, taking less than 1 min to convert 100,000 images to frequency domain
images on an Intel Xeon Gold 6330. However, our MDFF method also has its limitations. Due to
the addition of frequency domain images, the memory usage and the GPU training time of the
new network also nearly doubles compared to the original network.

4.2 Main Results
The experimental results are shown in Table 1. Except for the models with “-pre” after their
name, the models appearing in this paper do not load any pre-trained weights. The ViT,

Table 1 Comparisons with transformer models and convolutional models on Dota32×32, Dota32
2 ×

32
2

and cifar1032
2 ×

32
2
and Fashion-MNIST.

Models
Params
(M)

FLOPs
(G)

Dota32×32
(%)

Dota32
2 ×

32
2

(%)
cifar1032

2 ×
32
2

(%)
Fashion

MNIST (%)

Convolutional

ResNet50 (2016) 25.55 4.13 74.13 67.24 62.26 94.97

DenseNet (2017) 7.97 4.39 79.65 73.30 59.76 94.86

HorNet-gf (2022) 49.64 11.36 87.56 82.47 63.73 95.01

ConvMixer (2022) 1.95 2.54 87.82 83.48 62.14 95.28

MDFF-ConvMixer (ours) 3.90 5.09 90.14 84.77 66.00 95.55

Transformer

Deit (2021) 62.40 47.82 85.00 78.68 53.27 91.47

ViT-pre (2020) 99.00 53.36 88.13 83.61 58.25 95.06

ViT (2020) 99.00 53.36 79.22 78.62 36.20 90.63

Cross ViT-pre (2021) 50.54 3.50 86.61 79.41 56.81 92.30

Cross ViT (2021) 50.54 3.50 86.53 79.14 55.84 92.10

SwinV1 (2021) 48.77 11.14 85.74 82.73 47.41 94.31

CSWin (2022) 34.14 8.38 87.62 83.14 58.65 94.36

MDFF-ViT (ours) 38.62 7.96 88.15 79.75 59.23 94.53

Note: Bold values represent the best result, and bold italic values represent the suboptimal values.
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Deit, and Cross ViT are commonly used transformer models, and ResNet and DenseNet are
commonly used convolutional models.

4.2.1 Convolutional models

It can be seen from Table 1 that in the comparison among the convolutional models, MDFF-
ConvMixer with the MDFF module achieves the best top-1 accuracy indices on Dota32×32,
Dota32

2
×32

2
, cifar32

2
×32

2
, and Fashion-MNIST. MDFF-ConvMixer is an extension of the ConvMixer

model that incorporates a frequency-domain branch, resulting in twice the parameter count and
FLOPs compared to ConvMixer. The performance improvement of MDFF-ConvMixer is not just
attributed to the increase in parameter count and FLOPs. MDFF-ConvMixer also achieves higher
accuracy compared to a ConvMixer with an equivalent parameter count and FLOPs (ConvMixer + F)
on various datasets. This observation is further substantiated in subsequent ablation experiments.

4.2.2 Transformer models

As seen from Table 1, on the multiscale small image datasets Dota32×32, Dota32
2
×32

2
, cifar1032

2
×32

2
,

and Fashion-MNIST, compared with the ViT that is not pretrained, Cross ViT and Deit, MDFF-
ViT has obvious advantages in terms of its classification ability. Cross ViT can be regarded as an
improved version of the ViT from the perspective of multiscale feature fusion, and compared
with Cross ViT, MDFF-ViT yields accuracy improvements of 1.62%, 0.61%, 3.39%, and 2.23%
on Dota32×32, Dota32

2
×32

2
, cifar1032

2
×32

2
, and Fashion-MNIST, respectively, which shows that the

improvement exhibited by MDFF-ViT over the ViT is not merely due to the fact that the number
of network calculations increases. It also shows that MDFF is more effective than multiscale
feature fusion under the same number of computations. On the four datasets, MDFF-ViT is
stronger than the pretrained Cross ViT, and the classification ability of the pretrained ViT is
competitive. The design of MDFF-ViT not only aims to improve accuracy but also considers
the efficiency of the model. Due to the additional features provided by MDFF, MDFF-ViT
requires fewer MLP layers and has a smaller parameter size compared to ViT and Cross
ViT. Furthermore, the FLOPs of MDFF-ViT are only 1/7 of ViT’s FLOPs, thanks to the con-
vergence achieved by the multi-domain features of MDFF-ViT in a shallower network. In terms
of accuracy, parameter size, and FLOPs, MDFF-ViT outperforms the non-pretrained ViT.

It is worth noting that MDFF-ViT, with its more complex feature fusion, demonstrates
inferior recognition performance compared to the simpler feature fusion approach of MDFF-
ConvMixer. This is because convolutional models, leveraging their inherent inductive prior for
exploiting spatial invariance in 2D image data, outperform transformer-based models in recog-
nition performance, with smaller parameter counts and computational requirements, especially in
the case of small datasets and non-pretrained classification models. Consequently, when using
non-pretrained models, ConvMixer outperforms ViT significantly in terms of recognition.
As a result, MDFF-ConvMixer surpasses MDFF-ViT in recognition performance.

However, it should be acknowledged that MDFF achieves gains of 8.93%, 1.13%, 23.03%,
and 3.90% for ViTon datasetsDota32×32,Dota32

2
×32

2
, cifar1032

2
×32

2
, and Fashion-MNIST, respectively,

whereas MDFF achieves gains of 2.32%, 1.29%, 3.86%, and 0.27% for ConvMixer on the same
four datasets. Comparing the improvement rates of the enhanced algorithms with the baseline
algorithms, it becomes evident that MDFF demonstrates significantly larger gains for ViTon data-
sets Dota32×32 and cifar1032

2
×32

2
, highlighting the effectiveness of more complex feature fusion.

4.3 Ablation Study

4.3.1 Ablation Study with Each Improvements

The MDFF-ConvMixer and MDFF-ViT frameworks designed in this paper both contain two
improvements: the introduction of frequency domain features and their feature fusion modules.
In this section, a series of ablation experiments are conducted with Dota32×32, Dota32

2
×32

2
,

cifar1032
2
×32

2
, and Fashion-MNIST as experimental subjects to better understand the effectiveness
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of each improvement. In the experiment, A represents the algorithm name, D represents the
frequency domain feature, and F represents feature fusion, which includes the following exper-
imental combinations (Table 2).

1. A: no improvement points are added;
2. A (D): in the basic network structure, only frequency domain features are used, and spatial

domain features are not used;
3. A + F: a dual-branch airspace feature fusion module is introduced to the basic network for

investigating whether the achieved performance improvement only due to the increase in
the number of parameters;

4. A + D + F: the MDFF-ConvMixer and MDFF-ViT methods proposed in this paper.

When D is added to the ViT and ConvMixer, since only the frequency domain features are
used, the resulting effect is not as good as that yielded when only the spatial domain features are
used, and the accuracy rate produced on the dataset decreases. When two improvement points are
added, the classification accuracy improves the most, which demonstrates the effectiveness of
the MDFF approach proposed in this paper.

4.3.2 Ablation Study with Different Feature Fusion Methods
of MDFF-ConvMixer

Spatial domain features and frequency domain features are two different types of features, the
better fusion of them, the more and richer information will be brought, which is very useful for
classification. We have introduced some feasible feature fusion schemes based on ConvMixer
respectively, details can be found in Sec. 3.3. In this section, to compare the performance of these
fusion schemes and verify the effectiveness of our models, a series of experiments will be con-
ducted on the Dota32×32 dataset. Except for these models, other hyperparameters such as batch
size are the same as mentioned before. Same as below.

The results of different feature fusion schemes based on ConvMixer on Dota32×32 dataset are
shown in Table 3, as well as their parameters and FLOPs. The symbols used in the table are
related to Fig. 2. These schemes in the table correspond to our model MDFF-ConvMixer and
five ConvMixer-related feature fusion schemes mentioned (from MC-Strategy1 to MC-Strategy5)

Table 2 Ablation study with each improvements on Dota32×32, Dota32
2 ×

32
2
and cifar1032

2 ×
32
2
and

Fashion-MNIST.

Models
Params
(M)

FLOPs
(G)

Dota32×32
(%)

Dota32
2 ×

32
2

(%)
cifar1032

2 ×
32
2

(%)
Fashion

MNIST (%)

Convolutional

ConvMixer 1.95 2.54 87.82 83.48 62.14 95.28

ConvMixer (D) 1.95 2.54 86.16↓1.66 80.61↓2.87 46.79↓15.35 86.83↓8.45

ConvMixer + F 3.90 5.09 88.50↑0.68 84.04↑0.56 64.26↑2.12 95.50↑0.22

ConvMixer + D + F
(MDFF-ConvMixer)

3.90 5.09 90.14↑2.32 84.77↑1.29 66.00↑3.86 95.55↑0.27

Transformer

ViT 99.00 53.36 79.22 78.62 36.20 90.63

ViT(D) 99.00 53.36 77.60↓1.62 77.32↓1.30 33.65↓2.55 85.61↓5.02

ViT + F 38.62 7.96 86.53↑7.31 79.14↑0.52 55.84↑19.64 94.48↑3.85

ViT + D + F
(MDFF-ViT)

38.62 7.96 88.15↑8.93 79.75↑1.13 59.23↑23.03 94.53↑3.90

Note: Bold values represent the best result.
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in Sec. 3.3. As seen in the tabel, our MDFF-ConvMixer achieves the best accuracy with smallest
FLOPs and parameters.

4.3.3 Ablation Study with Different Patch Sizes Used in MDFF-ConvMixer

When images are input into MDFF-ConvMixer, they are all processed into a sequence of
embedded image-patches by patch embedding machine. Different patch sizes will have a great
impact on model’s performance. Here we will perform experiments on Dota32×32 dataset to
understand the effect of patch sizes in MDFF-ConvMixer.

As a result of the feature fusion scheme of concate yMspa and yMfre is adopted in model MDFF-
ConvMixer, the sizes of yMspa and yMfre must be the same, and enventually the patch sizes of the
spa-branch and fre-branch must be the same, too. Since the patch sizes pair (7, 7) is used in
MDFF-ConvMixer, we test the other four pairs of patch sizes on Dota32×32 dataset such as
(3, 3); (5, 5); (9, 9); and (11, 11). Their accurateness, parameters, and FLOPs can be found in
Table 4. The symbols used in the table are related to Fig. 2.The MC-Strategy6 to MC-Strategy9
means the four models mentioned above that contain different patch sizes. Smaller patch sizes
lead to more FLOPs and richer information; bigger patch sizes reduce computation, but omit
some details of targets, especially for small targets. Combined with the experimental results,
by using the patch sizes pair (7, 7), MDFF-ConvMixer achieves the best accuracy with a little
increase in parameters and FLOPs and it confirms the superiority of our model for small targets.

4.3.4 Ablation Study with Different Feature Fusion Methods of MDFF-ViT

Efficient feature fusion is the key to learn multi-domain feature representations. To confirm
the effectiveness of MDFF-ViT, we propose other three different fusion strategies (from

Table 3 Ablation study with different feature fusion schemes of ConvMixer on Dota32×32 dataset.

Models Fusions
Dota32×32

(%)
Params
(M)

FLOPs
(G)

MDFF-ConvMixer Concat yM
spa and yM

fre 90.14 3.90 5.09

MC-strategy1 Concat xspa and x fre 87.51 7.12 9.26

MC-strategy2 Concat yspa and y fre 88.63 7.65 9.94

MC-strategy3 Fuse yM
spa and yM

fre with attention 89.86 4.77 6.22

MC-strategy4 outputspa þ outputfre 89.26 3.90 5.09

MC-strategy5 maxðoutputspa; outputfreÞ 87.38 3.90 5.09

Note: Bold value represents the best result, and bold italic value represents the suboptimal value.

Table 4 Ablation study with different path sizes of MDFF-ConvMixer on Dota32×32 dataset.

Models

Patch size Depth

Dota32×32
(%)

Params
(M)

FLOPs
(G)spa fre spa fre

MDFF-ConvMixer 7 7 24 24 90.14 3.90 5.09

MC-strategy6 3 3 24 24 86.97 3.84 27.91

MC-strategy7 5 5 24 24 89.30 3.87 10.11

MC-strategy8 9 9 24 24 88.25 3.95 3.12

MC-strategy9 11 11 24 24 87.76 4.01 2.13

Note: Bold value represents the best result, and bold italic value represents the suboptimal value.
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MV-strategy1 to MV-strategy3), and test them on the Dota32×32 dataset, respectively. The details
of each strategy are as follows.

MDFF-ViT: the method used in this article. First, fuse Tspa and Tfre by cross-attention
module, and then send the two results Tcls

spaþfre and Tcls
freþspa ouput by cross-attention module

to two separate MLP heads to get two different classification scores, finally add the two
classification scores to get the final result.

MV-strategy1: use cross-attention module to fuse Tspa and Tfre, then concat Tcls
spaþfre and

Tcls
freþspa, which are outputs from cross-attention module, finally only use one MLP head

to output the classification result;

MV-strategy2: compared with MDFF-ViT, only use transformer block for feature extraction,
instead of cross-attention module for feature fusion;

MV-strategy3: compared with MDFF-ViT, only use self-attention module instead of cross-
attention module to fuse features.

The symbols used above are related to Fig. 3. As seen in the Table 5, our MDFF-ViT
achieves the best accuracy with minor increase in FLOPs and parameters.

4.3.5 Ablation Study with Different Patch Sizes used in MDFF-ViT

Different from MDFF-ConvMixer, MDFF-ViT adds the two classification scores of the double-
branch as final output, so the sizes of Tspa and Tfre need not to be the same, which means we can
set patch sizes differently for spa-branch and fre-branch in MDFF-ViT. We test 9 different patch

Table 5 Ablation study with different feature fusion schemes of ViT on Dota32×32 dataset.

Models Fusions
Dota32×32

(%)
Params
(M)

FLOPs
(G)

MDFF-ViT Cross-attention + score-add 88.15 38.62 7.96

MV-strategy1 Cross-attention + feature-concate 87.38 38.62 8.28

MV-strategy2 Score-add 86.88 26.02 6.66

MV-strategy3 Self-attention + score-add 87.11 44.92 9.93

Note: Bold value represents the best result, and bold italic value represents the suboptimal value.

Table 6 Ablation study with different patch sizes of MDFF-ViT on Dota32×32 dataset.

Models

Patch size Dimension

Dota32×32
(%)

Params
(M)

FLOPs
(G)spa fre spa fre

MDFF-ViT 16 16 384 384 88.15 38.62 7.96

MV-strategy4 32 32 384 384 87.36 40.24 2.21

MV-strategy5 32 16 384 384 87.39 39.44 5.25

MV-strategy6 32 8 384 384 87.21 39.51 17.54

MV-strategy7 16 32 384 384 87.03 39.44 5.25

MV-strategy8 16 8 384 384 87.56 38.70 20.58

MV-strategy9 8 32 384 384 87.10 39.51 17.54

MV-strategy10 8 16 384 384 87.70 38.70 20.58

MV-strategy11 8 8 384 384 86.70 38.77 32.87

Note: Bold value represents the best result, and bold italic value represents the suboptimal value.
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sizes pairs on Dota32×32, respectively, to learn the effect of patch sizes, results are shown in
Table 6. Without a doubt, MDFF-ViT achieves the best performance with the patch sizes pair
of (16, 16). Intuitively, small patch sizes will increase model’s computation and the memory
usage of GPU, simultaneously big patch sizes will lose details. The patch sizes pair (8, 8) should
get better results as it provides more fine-grained features; however it is not good as (16, 16)
because of it’s huge FLOPs. The patch size pair (8, 8) has 16 times as many tokens as patch sizes
pair (16, 16). The large number of tokens will generate a lot of floating point operations (FLOPs)
and take up a large amount of GPUmemory, leading to a very small batch size, such as 1 and high
randomness of the gradient of each layer of the model, which consumes a lot of training time and
makes the model difficultly to converge.

5 Conclusion
We propose an MDFF method for small target classification, which realizes multidomain feature
extraction through the fusion of frequency domain features and spatial domain features. The
MDFF method enriches the information content of targets, which is crucial for improving the
accuracy of small target classification tasks. Experiments demonstrate the effectiveness of this
method. Although the current work in this study only involves research on small target classi-
fication, the MDFF idea presented in this work can be used in more computer vision fields theo-
retically, such as object detection. This is because in the task of object detection, networks often
generate numerous proposals containing positive and negative samples. When performing bound-
ing box regression on the proposals and ground truth bounding boxes (GT-bbox), it is necessary to

Table 7 Comparisons with faster R-CNN on person-car dataset.

Models
Params
(M)

FLOPs
(G)

AP
(%)

AP50
(%)

AP75
(%)

APs
(%)

APm
(%)

APl
(%)

Faster R-CNN 41.13 407.12 44.71 71.30 48.22 25.47 51.93 60.04

MDFF-faster R-CNN 55.91 465.00 45.88 73.15 49.57 25.98 52.70 61.84

Note: Bold values represent the best result.

Fig. 6 Visualization of detection results. (a)–(c) The original image of person-car (a subset of
COCO34), faster R-CNN32 detection results, and MDFF-faster R-CNN33 detection results, respec-
tively. (d)–(f) The original image of UAV-human,35 faster R-CNN detection results, and MDFF-
faster R-CNN detection results, respectively. From panels (b) and (c), it can be observed that
MDFF-faster R-CNN corrects the issue of duplicate detections present in faster R-CNN; from pan-
els (e) and (f), it can be observed that MDFF-faster R-CNN corrects the false positive (misclassify-
ing a stone as a car) and false negative errors of faster R-CNN.
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assign a class to each positive proposal, a process similar to object classification. Therefore, the
use of the MDFF method can increase the information contained in the proposals, which is highly
beneficial for generating high-quality proposals. To demonstrate the feasibility of this viewpoint,
we made a simple modification to the ROI-HEAD of faster R-CNN32 by adding a frequency
domain branch for class prediction and named it MDFF-faster R-CNN.33 We trained it on a subset
of the COCO34 dataset (named person-car). To investigate the performance of our algorithm in
real-world scenarios, we also conducted transfer learning on the unmanned aerial vehicle (UAV)-
human35 dataset for object detection, where the targets are observed from the perspective of UAVs.
The experimental results in Table 7 confirmed that MDFF-faster R-CNN outperforms the original
faster R-CNN in terms of detection performance. Despite the increase in network parameters,
MDFF-faster R-CNN outperforms faster R-CNN in all COCO AP metrics, especially noteworthy
is the improvement of 1.35% in AP75, which further demonstrates that the MDFF method effec-
tively enhances the quality of proposals. Furthermore, from the visualization results in Fig. 6,
it can be observed that the inclusion of the MDFF method effectively eliminates false detections
and improves the quality of predicted bounding boxes. Based on the experimental results, we are
further convinced that incorporating multi-domain features will lead to better performance in
object detection. We plan to conduct further research and investigation in subsequent studies
to explore this extension thoroughly.

Code, Data, and Materials Availability
The truth dataset used in our study is publicly available. The author’s code and dataset are not
publicly available at this time but are available from the authors upon reasonable request.
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