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ABSTRACT. Purpose: The purpose is to assess the performance of a pre-trained deep learning
model in the task of classifying between coronavirus disease (COVID)-positive and
COVID-negative patients from chest radiographs (CXRs) while considering various
image acquisition parameters, clinical factors, and patient demographics.

Methods: Standard and soft-tissue CXRs of 9860 patients comprised the “original
dataset,” consisting of training and test sets and were used to train a DenseNet-121
architecture model to classify COVID-19 using three classification algorithms:
standard, soft tissue, and a combination of both types of images via feature fusion.
A larger more-current test set of 5893 patients (the “current test set”) was used to
assess the performance of the pretrained model. The current test set contained
a larger span of dates, incorporated different variants of the virus and included
different immunization statuses. Model performance between the original and cur-
rent test sets was evaluated using area under the receiver operating characteristic
curve (ROC AUC) [95% CI].

Results: The model achieved AUC values of 0.67 [0.65, 0.70] for cropped standard
images, 0.65 [0.63, 0.67] for cropped soft-tissue images, and 0.67 [0.65, 0.69] for
both types of cropped images. These were all significantly lower than the perfor-
mance of the model on the original test set. Investigations regarding matching the
acquisition dates between the test sets (i.e., controlling for virus variants), immuni-
zation status, disease severity, and age and sex distributions did not fully explain
the discrepancy in performance.

Conclusions: Several relevant factors were considered to determine whether
differences existed in the test sets, including time period of image acquisition, vac-
cination status, and disease severity. The lower performance on the current test set
may have occurred due to model overfitting and a lack of generalizability.
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1 Introduction
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a ribonucleic acid (RNA) virus
that can impact mammals and birds, is the virus responsible for the ongoing coronavirus disease
2019 (COVID-19) global pandemic. The primary mode of transmission among humans is
through exposure to respiratory fluids carrying infectious virus. The virus is highly contagious
and can rapidly mutate. Further, infection with the virus may lead to severe or fatal disease. Early
detection of the disease can mitigate the symptoms, however, and patient prognosis can improve.
Chest radiographs (CXRs) were recommended early in the pandemic for triage, disease mon-
itoring, and assessment of concomitant lung abnormalities (e.g., consolidation, ground-glass
opacities, and pulmonary nodules),1,2 which resulted in the acquisition of many medical images
worldwide. CXRs were also beneficial as they are widely accessible, which make them an ideal
modality for an image-based evaluation of the disease.

With the onset of the COVID-19 pandemic, the artificial intelligence (AI) community
quickly joined in the effort to ease the burden on healthcare systems. Before widespread access
to reverse transcription polymerase chain reaction (RT-PCR) tests, machine and deep learning
(DL) models were developed to provide rapid COVID-19 diagnoses and prognoses based on
patients’ CXRs and computed tomography scans.3–8 While many DL models reported success
in performing these tasks, translating this success to a clinical environment has been difficult due
to potential model overfitting or biases present in the datasets.9 These biases may result in a lack
of reproducibility and generalizability of the models developed, a common shortcoming recog-
nized by the AI community.10 The diversity of images acquired throughout the pandemic, there-
fore, allows for a comprehensive evaluation of AI models to assess the models’ generalizability
when using the various datasets available.

To determine the robustness of a DL model, an independent dataset can be used along with a
performance assessment metric [e.g., area under the receiver operating characteristic curve (ROC
AUC)].11 If the performance on independent test sets is comparable to the performance on the
original test set, then the model is deemed robust. If the model’s performance were to decrease,
however, then further evaluation is warranted to determine possible deficiencies. While CXRs are
not considered a clinical standard for COVID-19 diagnosis, their value lies in their utility for
AI assessment. Therefore, the implementation of the DL models in this work is not intended for
eventual clinical deployment but rather as a means to thoroughly evaluate the fundamentals of
AI as a diagnostic tool.

Overall, the purpose of this work was to validate a DL model, using COVID-19 diagnosis
from CXRs as the radiologic task, and to compare performance on different datasets while taking
into consideration factors, such as image-acquisition device [e.g., portable units versus stationary
dual-energy subtraction (DES) units], patient vaccination status, patient age, and disease
severity.12 These analyses were meant to assess and quantify AI generalizability in the differ-
entiation of COVID-positive and COVID-negative patients based on chest radiography. This
research highlights the importance of not only developing DL models but also rigorously testing
their performance across various scenarios to ensure robustness.

2 Methods

2.1 Datasets

2.1.1 Original dataset

The original dataset consisted of 9860 patients retrospectively collected from the University of
Chicago Medicine. This cohort was split at the patient level into 64% for training, 16% for val-
idation, and 20% for testing using stratified sampling. COVID-19 prevalence was held constant
across the three subsets (15.5%). Only the first CXR exam acquired within 2 days after a patient’s
initial RT-PCR test for the SARS-CoV-2 virus was input to the model. CXRs had been acquired
between January 30, 2020 and February 3, 2021; both standard and soft-tissue images were
collected from stationary DES radiography units and portable radiography units (i.e., CXR exam
type). The portable units generated soft-tissue images using post-processing algorithms. More
information regarding this dataset can be found in Hu et al.;13 the test set from this study will be
called the “original test set.”
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2.1.2 Current test set

Images that comprised the “current test set” were retrospectively collected from 5893 patients
between March 15, 2020 and January 1, 2022 under a Health Insurance Portability and
Accountability Act (HIPAA)-compliant, Institutional Review Board-approved protocol. Among
these patients, 731 (12.4%) had tested positive and 5162 (87.6%) had tested negative for the
SARS-CoV-2 virus. The current test set served only to assess the performance of the pre-trained
model: no additional training or validation was performed. Patient images from the previous study
and the current study were acquired from the same institution and were preprocessed in the same
manner. Overall, the current test set followed the same curation process as the original dataset to
minimize the impact of any confounding variables. A summary of the datasets is presented in
Tables 1 and 2, where Table 2 categorizes the three manufacturers that were used to acquire the
standard CXR images for both test sets: Canon Inc., GE Healthcare, and Fujifilm Corporation.

2.2 Image Preprocessing
The original digital imaging and communications in medicine (DICOM) images were gray-scale
normalized per image (i.e., per sample) and converted to Portable Network Graphics (PNG)
format. Using the converted PNG images, an open-source U-Net-based model was used to seg-
ment the lung region on radiographs from the original dataset and the current test set.14 The
smallest rectangular region that contained the resulting lung mask on a patient’s standard
CXR image then was cropped; the same mask was applied to a patient’s corresponding soft-
tissue image. The weights used for the segmentation task were calculated using a pre-pandemic
public CXR dataset15 and further fine-tuned on another dataset of radiographs displaying
COVID-19.13,16 Cropping was shown to improve results on the original dataset13 and was, there-
fore, performed on the current test set to be (1) consistent and (2) ensure the DL model would not
consider areas outside the outside the lungs (e.g., abdominal region, chest wall, shoulder, and
neck region).

The impact of the cropped lung region dimensions on the performance of the classification
task was explored on the standard CXRs of the original test set. The U-Net-based model used for
lung segmentation initially resized an entire image to 256 × 256 pixels and cropped the rectan-
gular region that enclosed the predicted lung mask, which will be called the “small lung region.”

Table 1 Summary of datasets used, categorized by various factors, including type of units used to
acquire the images.

Number of
patients

Average date of
acquisition

COVID
prevalence

Number of portable
scans (%)

Number of DES
scans (%)

Original training set 7888 August 12, 2020 15.4% 6243 (79.1%) 1645 (20.9%)

Original test set 1972 August 13, 2020 15.5% 1595 (80.1%) 377 (19.1%)

Current test set 5893 March 19, 2021 12.4% 4165 (71%) 1728 (29%)

Table 2 Number of patients categorized by manufacturer and CXR exam
type for the original and current test set.

Original test set Current test

Portable DES Portable DES

Canon Inc. 1595 12 4163 43

GE Healthcare 0 359 2 1596

Fujifilm Corporation 0 6 0 89

Total 1595 377 4165 1728
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This small lung region was then upsampled to 256 × 256 pixels by the DenseNet-121 model17

prior to classification (top panel of Fig. 1). To study the impact of image resizing, two inves-
tigations were performed. First, the U-Net-based model was adjusted to generate the segmented
lung region in the same dimensional space as the original image. The resultant “large lung
region” image was then input to the DenseNet-121 model for classification (bottom panel of
Fig. 1). The second investigation resized the large lung region image in the bottom panel of
Fig. 1 to the size of the corresponding small lung region image in the top panel of Fig. 1 before
the classification step. All image resizing was performed using the Python PIL package “Image”
module, which is also utilized by the U-Net-based model.

2.3 Model Implemented
The basis for the present study was a model that was developed by Hu et al.13 using the original
dataset. The model was based on a DenseNet-121 architecture because of its previous success in
diagnosing pneumonia and other pathologies on CXRs.18,19 Further, it followed a curriculum
learning methodology as discussed in Bengio et al.20 The curriculum learning became more spe-
cialized at each phase, concentrating the model on COVID-19 by the last step. The three phases
were: (1) pre-train on ImageNet and fine-tune on the National Institutes of Health (NIH) ChestX-
ray14,21,22 (2) refine on the Radiological Society of North America Pneumonia Detection
Challenge dataset to detect pneumonia,23 and (3) further train on an in-house COVID-19 dataset.
Specifically, phase 3 consisted of three classification algorithms developed by image type:
standard, soft-tissue, and a combination of both image types via feature fusion, as presented
by Hu et al.13 Throughout this study, the algorithms were applied to their corresponding image
type (e.g., the algorithm developed with standard CXRs was tested only on standard CXRs).
All of the statistical analyses focused on the performance of the current test set when input to
the pre-trained model after phase 3, with no additional training or validation performed.

2.4 Statistical Analysis

2.4.1 Current test set only

Performance of the three classification algorithms was assessed by CXR exam type (portable
versus DES) on the current test set.

2.4.2 Original test set versus current test set

Comparisons of model performance between the original and current test sets were performed for
standard CXRs when considering (1) the entirety of the two test sets (this comparison was

Fig. 1 The image preprocessing pipeline used throughout this work. Top panel: a patient’s stan-
dard CXR was resized to 256 × 256 pixels, the lung region was subsequently segmented and
cropped, which generated a rectangular region containing only the lung (the small lung region).
Bottom panel: after the segmentation task, the cropping was performed in the same dimensional
space as the original image.
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repeated for the soft-tissue CXRs and fusion of the image types), (2) the original test set and only
CXRs from the current test set acquired within the date range of the original test set (to control for
the different virus variants), and (3) nonimmunized patients from both test sets (to control for
the impact of disease severity due to vaccines).

The ability of the DL model to classify disease will depend on the severity of the disease as
presented on a medical image. Therefore, the COVID severity of the CXRs in the original and
current test sets was calculated, as studied by Li, et al.24 Briefly, the COVID severity model
computed a pulmonary x-ray severity (PXS) score, which is defined as the median Euclidean
distance between the image of interest and “normal” images (i.e., absence of all pathologies25).
Specifically, the Euclidean distance, with respect to the imaging features on which the net-
works trained, was between the final two layers of twinned DenseNet-121 networks within
a Siamese neural network. On a subset of 50 cases from the original test set chosen using
stratified sampling, the manual modified radiographic assessment of lung edema scores (mRALE,
based on the RALE score created byWarren et al.26) were determined by a radiologist with over
20 years of experience. The PXS scores were assessed using a Bland–Altman plot27 to display
the agreement between the computed PXS and mRALE scores. The Spearman’s rank corre-
lation coefficient was also calculated to assess the monotonic relationship between the PXS
and mRALE scores. Model performance based on PXS score was evaluated after grouping
the cases into four equally spaced bins. Due to the small numbers in the fourth bin for each
of the test sets, however, the cases for the third and fourth bins were combined, resulting in
three bins for analysis. The “obviousness” of each case was also qualitatively assessed by
plotting the DL prediction scores of the cropped standard images from the original and current
test sets.

Uniform manifold approximation projection (UMAP28) was used to visualize the penulti-
mate global average pooling layer of the standard model to qualitatively evaluate the COVID-19
classification task and to visualize the confusion matrix. A quantitative comparison of the
UMAPs was performed using one-way multivariate analysis of variance (MANOVA) to test for
a significant difference between the two bivariate means of the UMAPs; specifically, the bivariate
means were tested for statistical significance using Pillai’s trace to calculate the F-statistic, which
then resulted in its corresponding p-value. In addition, a comparison of demographics (i.e., age
and sex distributions) between patient cohorts was performed, and an analysis of standard model
performance with images of the various image dimensions previously described of the image
preprocessing steps was conducted on the original test set.

Overall, these investigations were designed to better understand potential confounding fac-
tors that might have occurred during image acquisition, different variants of the COVID-19 virus,
and patient age. Furthermore, clinical factors, such as vaccination status and severity of COVID,
were assessed. Performance was evaluated using area under the ROC curve as the figure of merit
(2000 bootstrapped samples to construct the 95% confidence intervals), with the DeLong test
used to compare the uncorrelated ROC curves.29

3 Results

3.1 Current Test Set Only

3.1.1 Classification algorithm

The three classification algorithms corresponded to training the model with the original dataset
using (1) cropped standard images, (2) cropped soft-tissue images, (3) and a feature fusion of
the two image types. The pre-trained (i.e., no additional training or validation) DL model then
was applied to the current test set and achieved the AUC values presented in Fig. 2.

The AUC value obtained using the cropped standard CXR images (0.67 [0.65, 0.70]) was
significantly higher than that obtained using soft-tissue CXRs (0.65 [0.63, 0.67]). AUC values,
however, failed to achieve statistical significance when comparing (1) cropped standard CXRs
with both types of images (fusion) and (2) soft-tissue CXRs with both types of images. The
results are displayed in Table 3.

Shenouda et al.: Assessment of a deep learning model for COVID-19 classification. . .
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3.1.2 CXR exam type

When considering the CXR exam type (e.g., portable versus a DES unit), the AUC values
achieved are shown in Table 4. AUC values failed to achieve statistical significance when com-
paring across CXR exam type for each classification algorithm, i.e., the type of unit did not
appear to have an impact on the model’s performance in the task of classifying COVID-19.

Fig. 2 ROC curves for the classification of COVID-positive and COVID-negative patient CXRs
using the current test set. No additional training or validation was performed. ROC curves were
fitted using software as defined by Metz et al.31

Table 3 Comparisons of model performance for the three classification algorithms: standard
images, soft-tissue images, or both types. P-values comparing the differences in AUC values were
calculated using the DeLong test, with their corresponding confidence intervals (CIs), prior to multi-
ple comparisons correction.30 Significance levels (α) and widths of the CIs were adjusted based on
multiple comparisons.

P-value for ΔAUC α CI of AUC

Standard versus soft-tissue 0.0069a 0.017 98.3% CI = [0.0030, 0.050]

Standard versus fusion 0.42 0.050 95% CI = [−0.010, 0.025]

Soft-tissue versus fusion 0.031 0.025 97.5% CI = [−0.039, 0.00075]

aStatistically significant difference after correcting for multiple comparisons (Bonferroni–Holm correction).

Table 4 Model performance categorized by the different image types (classification algorithms) as
acquired from the different radiography units for the current test set. 95% CIs are displayed in
brackets. Majority of portable images were acquired on Canon Inc. units and majority of DES
images were acquired on GE Healthcare and Fujifilm Corporation units.

Portable = 4165 (70.7%) DES = 1728 (29.3%) Overall = 5893

COVID-19 prevalence 471 (11.3%) 260 (15.0%) 731 (12.4%)

AUC [95% CI] Standard 0.68 [0.65, 0.71] 0.69 [0.65, 0.73] 0.67 [0.65, 0.70]

Soft-tissue 0.66 [0.63, 0.69] 0.64 [0.60, 0.68] 0.65 [0.63, 0.67]

Fusion 0.68 [0.65, 0.71] 0.68 [0.64, 0.72] 0.67 [0.65, 0.69]
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3.2 Original Test Set Versus Current Test Set

3.2.1 Entirety of both test sets

All AUC values obtained in Fig. 2 were lower than those obtained in Hu, et al.13 (p < 0.001) as
calculated using the DeLong test for uncorrelated ROC curves. Figure 3 shows the comparison of
ROC curves and values between the two test sets.

3.2.2 Date match

There were four main COVID-19 variants of concern (VOC) that underlie the datasets (as defined
by the City of Chicago Department of Public Health):32 the original strain, B.1.1.7 (Alpha) begin-
ning in January 2021 until June 2021, Delta from July 2021 to December 2021, and Omicron in
December 2021 onward. Therefore, the original dataset had two VOC: the original variant and
Alpha. The current test set had all four VOC. Table 5 displays the AUC values acquired when
controlling for the variants.

The original and Alpha VOC were controlled for when the current test set was limited to
the image acquisition date range of the original test set. An AUC value of 0.66 [0.62, 0.70]

Fig. 3 Comparison of ROC curves and AUC values between (a) original and (b) current test sets.
AUC values for the three classification algorithms were consistently lower for the current test
set compared with the original. Panel (a) is the same figure as Fig. 6 in Ref. 13 (reprinted with
permission) and panel (b) is the same as Fig. 2.

Table 5 AUC values calculated for each of the four variants underlying the two test sets.

Original variant
(start to December 31,

2020)

Alpha
(January 1, 2021
to June 30, 2021)

Delta
(July 1, 2021 to

November 30, 2021)

Omicron
(December 1,

2021 to present)

Original test set AUC
[95% CI]

0.77 [0.73, 0.80] 0.65 [0.52, 0.79] NA NA

Current Test Set AUC
[95% CI]

0.67 [0.62, 0.71] 0.68 [0.65, 0.72] 0.71 [0.66, 0.76] 0.63 [0.54, 0.71]

Number of patients
in original test set
(COVID prevalence)

N ¼ 1782 (15.9%) N ¼ 190 (11.1%) N ¼ 0 N ¼ 0

Number of patients
in current test set
(COVID prevalence)

N ¼ 1552 (14.4%) N ¼ 2827 (10%) N ¼ 1320 (11.6%) N ¼ 194 (36.6%)

AUC for variant 0.72 [0.70, 0.75] 0.68 [0.65, 0.72] NA NA
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(significantly different from the AUC of the original test set, p < 0.001) was achieved when
considering cropped standard CXRs acquired within the same image acquisition dates as the
original test set. This date match corresponds to the overlap of the green histogram bars with
the blue as shown in Fig. 4.

3.2.3 Immunization status

The current test set achieved an AUC value lower than that of the original test set when compar-
ing the cropped standard CXRs of nonimmunized patients from the two patient cohorts, as shown
in Table 6. Further, to determine whether immunization status had an impact on the DL model’s

Fig. 4 Histogram of the imaging exam dates, categorized by the current test set, the original train-
ing set, and the original test set. The current test set had a much larger date range, spanning March
15, 2020 to January 1, 2022.

Table 6 Summary of statistical analyses performed between the original test set and the current
test set. AUC comparisons were conducted using the unpaired Delong test and all three compar-
isons between the test sets were statistically significantly different (p < 0.001).

Original test set Current test set

Total comparison

Date range February 20, 2020 to February 3, 2021 March 15, 2020 to January 1, 2022

Number of patients 1972 5893

COVID prevalence 15.5% 12.4%

AUC [95% CI] 0.76 [0.73, 0.79] 0.67 [0.65, 0.70]

Date match

Date range February 20, 2020 to February 3, 2021 March 15, 2020 to February 2, 2021

Number of patients (%) 1972 (100%) 1737 (29.5%)

COVID prevalence 15.5% 14.6%

AUC [95% CI] 0.76 [0.73, 0.79] 0.66 [0.62, 0.70]

Nonimmunized patients

Number of patients (%) 1966 (99.7%) 4436 (75.3%)

COVID prevalence 15.5% 14.4%

AUC [95% CI] 0.76 [0.73, 0.79] 0.67 [0.65, 0.70]
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performance in classifying COVID-19 status, a comparison between immunized and nonimmu-
nized patients in the current test set was performed; differences in AUC values failed to achieve
statistical significance (p ¼ 0.60).

3.2.4 COVID severity

COVID severity was assessed for both patient cohorts; differences between the PXS scores
failed to achieve statistical significance (p ¼ 0.17). PXS scores also failed to achieve a statistically
significant difference when matching the image acquisition dates between the test sets (p ¼ 0.06).
The robustness of the severity score itself was evaluated based on the 50 cases selected in Fig. 5
using the Spearman’s rank correlation coefficient (ρ ¼ 0.74, p < 0.001) as well as a Bland–Altman
plot to display agreement (Fig. 6). The Bland-Altman plot showed that the PXS score (calculated
using the standard CXRs) was on average lower than the radiologist’s assessment [Fig. 6(b)].

AUC values resulting from cases in the three PXS score bins for the test sets (details pre-
sented in Table 7) are displayed in Fig. 7. The highest AUC value for the original test set was
achieved for the third bin, which contained cases with the highest COVID prevalence (45.05%).
The highest AUC value for the current test set resulted from the second bin, which contained
cases with the second highest COVID prevalence (35.09%). Though, the 95% CIs increased with

Fig. 5 Stratified sampling of the 50 random cases from the original test set to determine the robust-
ness of the PXS scores. 10 cases were randomly chosen from each part of the box and whisker
plot to ensure an equal representation of cases from all possible PXS scores assigned.

Fig. 6 (a) A scatter plot of a subset of images (from the original test set) displaying the linear
correlation between the mRALE score calculated by the radiologist and the COVID severity as
determined by the DL model described by Li et al.,24 where the shaded blue region is the 95% CI.
(b) Bland–Altman plot displaying the agreement between the methods of assessing COVID
severity. The outlier outside the 95% boundary was a collapsed left lung with possible effusion.12
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bin edges since the number of cases decreased. The COVID prevalence increased with increasing
bin edges, predictably, as higher PXS scores indicate greater radiographic evidence of abnor-
mality. Overall, the original test set yielded AUC values consistently larger than those of the
current test set. The distribution of severity scores split according to positive and negative cases,
per test set, is shown in Fig. 8.

3.2.5 DL model predictions

Figure 9 presents histograms displaying the prediction scores assigned by the model for the
original and current test sets. The distributions display a higher proportion of images from the
original test set at low (≤0.25) and high (≥0.75) prediction scores relative to the images from the
current test set, which resulted in the observed higher performance on the original test set. There
was a slightly higher count for the current test set at scores in the middle of the plot, i.e., less
certain predictions assigned by the DL model.

Table 7 Definition of PXS score bins for the test sets.

Original test set Current test set

PXS score bin edges 0.77/4.12/7.46 0.76/5.12/9.48

Counts (N) 1538/343/91 4914/859/120

COVID prevalence (%) 11.31%/26.24%/45.05% 10.56%/19.79%/35.09%

Fig. 7 Bar plot depicting the resulting AUC values when controlling for PXS scores using histo-
gram bins. The 95% CIs were calculated by bootstrapping the AUC values 2000 times.

Fig. 8 Histogram plots of the original (a) and current (b) test sets. Both distributions have strong
right skews with higher frequency of positive cases having larger PXS scores.
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3.2.6 UMAP visualization

UMAP visualizations indicated that the model perceived the two sets of CXRs nearly identically
(Fig. 10). This observation was supported by the MANOVA analysis, which generated an F-
statistic of 1.9014 and a p-value of 0.1494, failing to achieve a statistically significant difference

Fig. 9 Histogram of the prediction scores of the DL model for both test sets. The distribution
(a) before February 3, 2021 and (b) the entire data range. February 3, 2021 was chosen as the
cutoff date as that is the last date which had an overlap of CXR acquisitions between the two
patient cohorts (see Fig. 4). The histograms were normalized to have equal area.

Fig. 10 UMAP visualization of the confusion matrix for (a) the original test set and (b) the current
test set. A similar decision variable was chosen by the deep net for both patient cohorts, classifying
positive cases from negative cases (division between blue and orange dots). Overall, the model
returned a higher percentage of TPs and lower percentage of FPs for the original test set than for
the current test set.12

Shenouda et al.: Assessment of a deep learning model for COVID-19 classification. . .

Journal of Medical Imaging 064504-11 Nov∕Dec 2023 • Vol. 10(6)



between the two bivariate means of the UMAPs generated for the original test set and for the
current test set. However, variation existed as the percentages of true positives (TPs) and false
positives (FPs) were different between the original test set (TP = 8%, FP = 11.9%) and the current
test set (TP = 4.8%, FP = 12.9%).

3.2.7 Patient demographics

Despite the nearly identical mean and median ages between the two test sets (Table 8), the dis-
tributions of age (Fig. 11) yielded statistically significant differences based on the Wilcoxon
rank-sum test (p ¼ 0.006).

There were more male patients than female in the original dataset [5088 men and 4772
women (52% male)] and current test set [2979 men and 2914 women (51%)]. Table 9 summa-
rizes AUC values obtained when dividing the test sets with respect to sex. Statistical differences
occurred (p < 0.05) when comparing the AUC values of the original test set to the current test.
There were no significant differences within each test set.

Table 8 Statistics of the age distributions for the original dataset (which
includes training, validation, and test cases) and the current test set.

Original dataset Current test set

Mean age (± SD) 54.7 ± 18.9 55.9 ± 19.1

Median age (IQR) 56 (29) 59 (29)

Fig. 11 Histogram of patient age, categorized by the original dataset (which includes training, val-
idation, and test cases) and current test set.12

Table 9 Distributions of sex for the original and the current test set with their corresponding AUC
values and COVID prevalence.

AUC value COVID prevalence

(A) Original test set — male (N ¼ 1051) 0.76 [0.71, 0.80] 14.0%

(B) Original test set — female (N ¼ 921) 0.76 [0.71, 0.80] 17.2%

(C) Current test set — male (N ¼ 2979) 0.65 [0.62, 0.69] 11.1%

(D) Current test set — female (N ¼ 2914) 0.69 [0.67, 0.72] 13.7%
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3.2.8 Image dimensions

When using CXRs from the original test set that were resized by the U-Net-based model to
the large lung region dimensions (bottom panel in Fig. 1), the performance of the DL model
decreased for all three classification algorithms relative to the published original test set results
[Fig. 3(a)], obtaining AUC values of 0.74 [0.71, 0.77] for standard CXRs alone, 0.72 [0.69, 0.75]
for soft-tissue CXRs alone, and 0.69 [0.66, 0.73] for both types of images. The feature fusion
algorithm experienced the largest decrease in AUC values.

To determine the impact of image resizing further, the large lung region images were resized
to the small lung region dimensions using the Image module from the PIL Python package. This
additional resizing resulted in AUC values closer to those obtained from the original test set
analysis: 0.76 [0.73, 0.79] for the standard CXRs alone, 0.72 [0.69, 0.76] for the soft-tissue
CXRs alone, and 0.75 [0.72, 0.79] for both types of images. Once more, the classification algo-
rithm incorporating both types of images experienced the largest decrease in classification per-
formance. While the images in this additional analysis were resized to the smaller dimensions
using the same Python packages as the U-Net-based model, the cropped images were not iden-
tical to the original test set as determined by evaluating the pixel values. The value of U-Net
cropping was demonstrated using uncropped standard CXRs of the current test set, for which
the model achieved an AUC value of 0.58 [0.56, 0.61], substantially lower than the 0.67 reported
throughout this work.

4 Discussion
The novelty of this study involves its in-depth and exhaustive analysis of various factors that
may have contributed to the significant difference in performance by the DL model between
the original and current test sets. The results were explored in a variety of ways: performance
was assessed across classification algorithm, by CXR exam type, and during different time peri-
ods to account for different variants of the COVID virus. Model performance was also evaluated
when controlling for equipment manufacturers and various VOC. Vaccination status and disease
severity were also considered to determine their impact on the classification task. In addition,
patient ages and sex were taken into account, along with the model’s perception of the radio-
graphs for the two test sets. Influence of the various cropped lung region dimensions was
evaluated.

Similar to results obtained from the original test set, the cropped standard CXRs in the cur-
rent test set performed better when compared with the cropped soft-tissue images. Differences in
AUC values between standard and both types of CXRs, however, failed to achieve statistical
significance (Table 3); however, AUC values for the three classification algorithms were all sig-
nificantly lower than those of the original test set. Dividing the CXRs between portable and DES
was performed to investigate whether the type of radiography unit would have an impact on
robustness of the DL model. Unlike for the original test set (Table 4 in Ref. 13), there were
no significant differences in AUC values as presented in Table 4. This was unexpected as the
two types of CXR units generate images of different quality. For example, for soft-tissue image
acquisition, a DES unit acquires an image by generating two separate energies of x-rays, and the
resultant image is obtained by subtracting the two images from each other to acquire the soft-
tissue image. Portable units generate x-rays only at one energy followed by postprocessing algo-
rithms, which create a synthetic soft-tissue image. Further, patient geometry is different between
the two types of units, as patients are typically oriented in anterior-posterior positioning for port-
able units and posterior-anterior for DES units. One must also be aware of the motion artifacts
that arise from a CXR acquired from a portable unit. Despite these factors, no significant
differences were observed in the AUC values between the two types of radiography units.

Given that there were no significant differences in AUC values between the two types in this
work, however, this factor did not explain the decrease in model performance. The original and
current test sets were also visually assessed, and there were no apparent differences in image
quality between the two sets. Further, gradient-weighted class activation mapping (Grad-CAM)
heatmaps were employed to visually assess the predictions of the model for both negative and
positive cases from the original and current test sets for high (>10) and low (<1) severity as
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determined by the PXS score. This analysis, however, did not portray a distinction between the
two test sets.

Analysis of patient demographics for the two sets, i.e., age and sex distributions, did not
provide any further explanations regarding the discrepancy of performance. The findings when
matching for sex were consistent with the other investigations: the model better classified
COVID-19 status of patients from the original test set than from the current.

The original test set had more “obvious” negative and positive cases than the current test set
(Fig. 9), which may have impacted the differences in performance between the two test sets. The
“obviousness” of a case was suggested by the increased counts for the low (cases the model
perceived as negative) and high (cases the model perceived as positive) prediction scores for
the original test set when compared with the current test set [Fig. 9(b)]. This trend was amplified
when limiting the date range prior to February 3, 2021 [Fig. 9(a)], i.e., limiting the current test set
to the image acquisition date range of the original test set (Sec. 3.2.2), which likely explains why
the date range-matching analysis did not increase the AUC value to one comparable to that of the
original test set. Immunization status also did not provide an explanation for the discrepancy in
decreased performance.

While the PXS score was designed to evaluate only COVID-positive patients, there was
merit in applying this technique to the CXRs of COVID-negative patients because patients
obtaining a CXR usually have suspicion of some abnormality in the lung. Therefore, the PXS
score, which is defined as the median Euclidean distance between the image of interest and
“normal” images, was still a useful metric to incorporate because many of the CXRs of the
COVID-negative patients were not “normal.”

The data-reduction capability offered by the UMAP was applied to the penultimate global
average pooling layer; a two-dimensional embedding was generated that helped visualize how
the DL model interpreted the CXRs, thus providing an interpretation of the perception of the
radiographs by the model. A nearly identical embedding for images acquired from both cohorts
was illustrated. COVID-negative patients appeared to be more sparse in the embedding for the
current test set, however, than for the original test set.

While this work followed the same image preprocessing for the original dataset and current
test set, investigation in changes of the cropped lung region dimensions provided insight on how
small changes may lead to different results when using DL models. Overall, this work demon-
strated the complexity of attaining model robustness and generalizability: an “off-the-shelf” deep
net capable of performing classification tasks across different datasets with minimal training
remains an elusive task. Therefore, one explanation for the significant difference in performance
between the test sets used in this study is a lack of generalizability of the model, which was
unable to correctly classify COVID for a new test set (from the same institution) as robustly
as it did for the data on which it had been trained originally.

To address this lack of generalizability, future work will investigate (1) the impact of patient
demographics and clinical factors on the classifier, (2) whether there were differences in the
“obvious” negative or positive patients between the two cohorts, and (3) altering the architecture
of the model to make it more robust. First, while patient age and sex was examined for both the
original dataset and current test set, matching for age and sex on the training set and test set could
provide an explanation for the decrease in performance of the model (e.g., investigate the higher
AUC value obtained when considering female patients on the current test set further). COVID
severity could also be controlled for between the training and test set. Second, an analysis of the
characteristics of only the positive patients from both cohorts will be performed. For example, if
the positive patients in the original test set are older than the positive patients in the current test
set, then disease presentation across age may contribute to the performance decrease. Third,
a weight regularizer can be applied to the DenseNet layers (specifically, L2 regularization)
to impose a penalty on the calculated weights, which in turn will prevent model overfitting and
possibly make it more generalizable. This will be one approach in potential ablation studies.
Repartitioning the original dataset will also be done to determine whether favorable partitions
were the reason for discrepancy in performance. Overall, the regularization could also mitigate
the impacts of random data partitions, yielding more robust results.

While the the AI community joined in on the efforts early in the pandemic, the community
also started recognizing the shortcomings of the methodologies employed, leading to unreliable
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models.9,33 For example, training sets early in the pandemic suffered from small sizes and class
imbalances, which made it unlikely that the results of AI models would generalize to broader
populations. Goncalves et al.34 reported that some models originally trained on small datasets
from China were intended for use in European populations, resulting in ineffective models due to
differences in patient biomarkers and data acquisition protocols. Further, many public datasets of
COVID-19 patients comprised images taken from journal articles without access to the original
DICOM images,35 raising concerns about image quality and whether “pictures of pictures”
provide the same quality data as original images.33,36,37 What distinguishes this research, how-
ever, is the systematic analyses performed to compare datasets that were acquired from the same
institution, using the same machinery and imaging protocols; therefore, this novel work provides
invaluable insight to how DL models may falter even within the same institution, which in turn
can reveal ways to mitigate the lack of model robustness.

5 Conclusion
A larger and more current test set of CXRs was used to validate the performance of a pre-trained
DL model designed to differentiate COVID-positive from COVID-negative patients. An AUC
value of 0.67 for cropped standard CXRs, 0.65 for cropped soft-tissue CXRs, and 0.67 for both
types of cropped images were achieved, which were significantly lower than initial performances
of 0.76, 0.73, and 0.78, respectively, on the original test set. Several factors were considered to
determine their impact on the observed differences in model performance on the test sets, includ-
ing time period of image acquisition, immunization status, age and sex distribution, and disease
severity. The underperformance of the model on the current test set may be explained by a lack of
model generalizability.
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