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ABSTRACT. Purpose: Analyzing the anatomy of the aorta and left ventricular outflow tract
(LVOT) is crucial for risk assessment and planning of transcatheter aortic valve
implantation (TAVI). A comprehensive analysis of the aortic root and LVOT requires
the extraction of the patient-individual anatomy via segmentation. Deep learning has
shown good performance on various segmentation tasks. If this is formulated as
a supervised problem, large amounts of annotated data are required for training.
Therefore, minimizing the annotation complexity is desirable.

Approach: We propose two-dimensional (2D) cross-sectional annotation and point
cloud-based surface reconstruction to train a fully automatic 3D segmentation
network for the aortic root and the LVOT. Our sparse annotation scheme enables
easy and fast training data generation for tubular structures such as the aortic root.
From the segmentation results, we derive clinically relevant parameters for TAVI
planning.

Results: The proposed 2D cross-sectional annotation results in high inter-observer
agreement [Dice similarity coefficient (DSC): 0.94]. The segmentation model
achieves a DSC of 0.90 and an average surface distance of 0.96 mm. Our approach
achieves an aortic annulus maximum diameter difference between prediction and
annotation of 0.45 mm (inter-observer variance: 0.25 mm).

Conclusions: The presented approach facilitates reproducible annotations. The
annotations allow for training accurate segmentation models of the aortic root and
LVOT. The segmentation results facilitate reproducible and quantifiable measure-
ments for TAVI planning.
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1 Introduction
Transcatheter aortic valve implantation (TAVI) is widely used to treat patients with aortic valve
stenosis.1 Preoperative image acquisition with computed tomography (CT) is recommended for
risk assessment and planning by clinical guidelines.2 The aortic root is commonly evaluated
using CT image data to derive the annulus diameter and position of the coronary ostia for pros-
thesis selection. The analysis of the anatomy of the left ventricular outflow tract (LVOT) provides
additional relevant information. For example, the angle between the LVOT and ascending aorta
was shown to be a risk factor for aortic regurgitation.3 Subsequently, we refer to the composite
aortic root and LVOT as the aortic outflow region [Fig. 1(a)].

A comprehensive analysis of the aortic root and LVOT requires the extraction of the patient-
individual anatomy via segmentation. In previous work, Lalys et al. proposed an aortic root
analysis approach starting with detecting the aortic centerline based on a manual marker followed
by a segmentation using a deformable three-dimensional (3D) snake.5 Conversely, Elattar et al.
presented a fully automatic approach based on thresholding and normalized cuts.6 However,
thresholding is susceptible to image distortions through noise, artifacts, or uneven distribution
of contrast agents.7

Another line of work uses atlas-based segmentation.8,9 These techniques might have diffi-
culties representing the local variation in pathological aortic root anatomy.7

Deep learning (DL) has shown good performance on various segmentation tasks.10

Typically, this is formulated as a supervised problem requiring annotated data. Saitta et al.11

used semi-automatic region growing for data annotation. For segmentation, they proposed
detecting the region of interest (ROI) using template matching followed by segmenting the aortic
root using a neural network. However, DL typically requires large amounts of annotated data.
Therefore, minimizing the annotation complexity is desirable.

Wasserthal et al.4 proposed an iterative annotation approach. They trained a network to pro-
pose the initial annotations. The final annotations were used to train the TotalSegmentator that
segments multiple anatomic structures on CT images. However, the TotalSegmentator output
leaves a gap between the left ventricle and the aorta. Therefore, large parts of the LVOT are
missing [Fig. 1(b)].

Generating annotations directly in 3D is a challenging and time-consuming task. Weak
annotations12 aim at alleviating these issues. Li et al.13 proposed sparse annotations only labeling
one slice per volume. Cai et al.14 proposed annotating multiple perpendicular slices to maximize
the data distribution coverage. However, Cai et al.14 applied their approach to multiple heart
structures, whereas our work solely focuses on the aortic annulus region. We assume that this
region has a tubular structure and, therefore, propose annotating two-dimensional (2D) slices
perpendicular to the centerline instead. As 2D cross-sectional annotation is well known in clinical
practice, our annotation scheme is intended to be intuitive for domain experts.

Fig. 1 (a) The aortic outflow region is comprised of the composite aortic root and LVOT. (b) The
segmentation provided by state-of-the-art solutions, such as TotalSegmentator,4 does not com-
pletely cover the aortic outflow region (olive).
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We present an annotation scheme based on sparse contours. In addition, we propose a deep-
learning-based 3D segmentation approach for the aortic outflow region. Using screened Poisson
surface reconstruction,15 expert-annotated 2D cross-sections are transformed into 3D masks. We
use these masks to train a 3D segmentation model. In addition, we show that our fully automatic
segmentation approach facilitates reproducible and quantifiable measurements of the aortic
outflow region. In contrast to previous works,5,6,8,9,11 we include measurements of the LVOT.

2 Methods
The processing workflow of our solution comprises valve region detection, segmentation, and
quantitative assessment (Fig. 2). For segmentation, we trained neural networks with represen-
tative clinical data sparsely annotated by experts.

2.1 Data
We used a dataset comprising contrast-enhanced CT scans of the torso of 103 patients from the
German Heart Center Berlin and the Charité TAVI registry.16 Data were acquired by multiple
scanner types: SIEMENS SOMATOM Definition Flash, SIEMENS SOMATOM Definition AS+,
TOSHIBA Aquilion ONE, and Philips Brilliance 64 (Fig. 3). The acquired images had a res-
olution between 0.57 and 0.90 mm, with 0.65 mm being the median value. All patients were
scanned prior to TAVI. Their average age at acquisition was 80� 9 years, and 51 patients were
female (Fig. 3). The study was approved by the local ethics committee (EA1/062/19).

2.1.1 Data preparation

We combined the results of a Vesselness filter18 and a Hough transform circle detector to cal-
culate a cost image from the CT scan. Based on markers defining LVOT and coronary arteries
(Fig. 4) and the cost image, the centerline of the aortic root and LVOT was calculated with the
Dijkstra path search. 2D cross-sections were defined perpendicular to the centerline with an off-
set of 1 mm. As proposed by Kaufhold et al.,19 the contours on each cross-section were initialized
using a ray-casting approach. On each cross-section, rays pointing outward from the centerline
point were defined. Intensity and gradient profiles were extracted along each ray to identify the
boundary point. Between the boundary points on each cross-section, the vessel contour was inter-
polated. Domain experts corrected the contours in multiplanar reconstruction views aligned with
the cross-sections’ orientation. Screened Poisson surface reconstruction was applied to create a
3D mask from the 2D cross-sections (Fig. 4).15 This algorithm considers the contours to be an
oriented point cloud. The point cloud is perceived as the boundary’s normal field. Hence, the
surface is retrieved by finding a scalar function with gradients matching the normal field. The
isosurface is extracted to find the object’s surface. It is approximated by solving an energy equa-
tion that combines a gradient constraint integrated over the spatial domain with a value constraint
summed over the given input points. The authors propose the Neumann boundary condition as it
has shown good performance in the presence of missing data.15 As suggested by Kazhdan et al.,15

Fig. 2 Image analysis pipeline: the CT scan is cropped to the ROI centered around the aortic
annulus and coronary ostia.16 Our proposed segmentation network takes the cropped image
as input and outputs the 3D mask. The segmentation mask is processed to obtain parameters
relevant for TAVI planning. CT image data are visualized as volume rendering to provide a better
impression of anatomical structures.
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we set the screening weight to 4, the “bounding-box-scale” to 1.1, and the “samples-per-node” to 1.
For surface extraction, the octree depth was set to 8, constituting an adequate resolution and
computational complexity.

Eleven datasets were randomly selected and annotated using a mask-based annotation
scheme. Domain experts used a 3D ball tool with a modifiable diameter to annotate the aortic
outflow region (Fig. 4). We use these annotations to compare the resulting masks with masks
obtained from the proposed sparse annotation scheme. The selected 11 datasets were labeled
independently by two domain experts using the proposed annotation scheme and the mask-based
annotation to facilitate analyses of the inter-observer variance by means of the average surface
distance (ASD) and Dice similarity coefficient (DSC).

Fig. 3 Model card of the proposed segmentation model following the framework proposed by
Mitchell et al.17
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2.1.2 Segmentation

The masks generated from the sparsely annotated data were used to train segmentation networks.
Given a cropped version of the CT images, the networks output 3D masks. Therefore, the images
were cropped to the ROI as described by Krüger et al. (Fig. 2).16 The ROI is centered around the
aortic annulus and coronary ostia with a fixed size of 80 × 80 × 80 mm3. However, instead of
using the proposed ensemble model, only the model trained with Focal Tversky (0.85) loss
was applied to reduce the computational complexity. All cropped images were resampled to
an isotropic resolution of 0.65 mm. This corresponds to the median value present in the dataset.
We compare the segmentation performance of the nnU-Net10 and the Swin UNETR.20 The nnU-
Net is a framework proposing self-configuring segmentation networks.10 We used the default
configuration for 3D high-resolution images. The Swin UNETR is a hierarchical vision
transformer.20 As proposed by the authors, we set the size of the embedding space to 48 and
the sliding window overlap to 0.7. The data were split into 80% training and 20% test sets.
Hence, 82 image pairs were used for training and validation and 21 for testing. The training
was done using fivefold cross-validation.

2.2 Aortic Valve Region Assessment
The segmentation masks are used to derive parameters for the quantitative assessment of the
aortic valve region. For example, Fig. 2 displays the diameter along the centerline. This infor-
mation can aid prosthesis selection for TAVI.

We evaluate clinically relevant parameters related to the aortic valve annulus and LVOT, i.e.,
diameter and area. Therefore, domain experts annotated the valve plane in the CT images. The
plane was used to obtain the corresponding mask cross-section. We evaluate the influence of the
distance between the 2D cross-sections along the centerline of the proposed annotation tech-
nique. In addition, we assess the agreement of expert annotation and model segmentation using
Bland–Altman analyses.

3 Results

3.1 Annotation
We compare the proposed 2D cross-section annotation with annotating 3D masks using a 3D ball
tool. Intra- and inter-observer variability is assessed by ASD and DSC on cross-sections of the
resulting 3D mask as well as for the 3D mask volumes. Table 1 displays the intra-observer vari-
ability between annotations obtained through both approaches for two observers. In addition,

Fig. 4 Annotation scheme: landmarks are placed at the LVOT, right coronary artery (RCA), left
coronary artery (LCA), and valve. The landmarks indicate the region relevant for aortic outflow
region annotation using a 3D ball tool. After 3D annotation, the markers are additionally used
to clip the relevant aortic region along the centerline. The proposed 2D cross-section annotation
scheme requires the landmarks for centerline definition. Cross-sections are initialized
perpendicular to the centerline. After correcting the contours, a 3D mask is generated using
screened Poisson surface reconstruction.15
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the inter-observer variability for the 3D ball tool annotations and 2D cross-section annotation
is given.

The results show low DSC and high ASD comparing 3D ball tool masks and masks obtained
through 2D cross-sections from one observer. The inter-observer variability for 3D ball tool
masks results in DSC 0.87� 0.03 and ASD 1.32� 0.33 mm. Masks obtained from 2D
cross-sections result in an improved inter-observer variability. A DSC of 0.94� 0.02 and
ASD of 0.68� 0.18 are achieved. Evaluating the 2D cross-section annotation in 2D, a DSC
of 0.91� 0.04 and an ASD of 1.10� 0.39 mm are obtained. Figure 5 shows an example with
high and low intra- and inter-observer variances.

3.2 Contour Offset
The annotated 2D cross-sections were defined with an offset of 1 mm along the centerline.
Subsequently, we evaluate the influence of increasing the offset between the cross-sections.
Hence, the mask resulting from contours at 1 mm distance (M1 mm) is compared with the masks
resulting from contours at 2 to 10 mm (M2−10 mm) along the centerline. M1;x mm denotes that
masks generated from contours with an offset of 1 and x mm are compared. However, the first
and last cross-sections are kept for all masks to ensure that the masks cover the same range along
the centerline (Fig. 6). Figure 7 displays the DSC and ASD between M1 mm and M2−10 mm for
the complete dataset.

The DSC and ASD indicate that the similarity betweenM1 mm andM2−10 mm decreases with
an increasing offset between the contours. The median DSC is close to 1 for M1;2 mm and drops
below 0.95 for M1;9 mm and M1;10 mm. For M1;5 mm, the DSC ranges between 0.64 and 0.99.
Increasing the offset by 1 mm (M1;6 mm) reduces the range to 0.93 and 0.98. However, for

Table 1 Intra-/inter-observer variance: 3D mask annotation using a ball tool (3DB) is compared
with the proposed 2D cross-section annotation (2DC). The intra-observer variability between the
3DB and 2DC masks for observer 1 (Obs. 1) and observer 2 (Obs. 2) is displayed. In addition,
the inter-observer variability using 3DB and 2DC is shown. For 2DC, the masks are compared in
3D and 2D contours derived from the 3D masks. All values are given as mean ± SD.

3DB - 2DC 3DB - 3DB 2DC - 2DC (3D) 2DC - 2DC (2D)

Obs. 1 Obs. 2 Obs. 1 - Obs. 2 Obs. 1 - Obs. 2 Obs. 1 - Obs. 2

DSC ↑ 0.82� 0.05 0.84� 0.03 0.87� 0.03 0.94� 0.02 0.91� 0.04

ASD (mm) ↓ 1.95� 0.65 1.64� 0.50 1.32� 0.33 0.68� 0.18 1.10� 0.39

Fig. 5 Annotated masks with (a) low pairwise DSC and (b) high DSC. The masks are shown as 3D
visualizations. The 2D image viewers present the 2D surface overlay of the masks.
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M1;5 mm, the majority of data points are between 0.94 and 0.98, and only a few data points result
in a low DSC.

Figure 8 shows the influence of increasing the offset between the cross-sections on the aortic
valve annulus parameters. It displays the difference between measurements derived from M1 mm

andM2−10 mm. The minimum diameter (Dmin) and area difference gradually decrease for increas-
ing offsets between the contours. This indicates that relevant information about the aortic valve

Fig. 6 Our proposed annotation scheme comprises cross-sections along the centerline at an
offset of 1 mm. By omitting an increasing amount of cross-sections, we obtain cross-sections
with offsets of 2, 5, and 10 mm. The first and last contour along the centerline is kept for all masks.
The contours (top) and resulting 3D masks (bottom) are shown.

Fig. 7 DSC and ASD between M1 mm and M2−10 mm as boxplot.

Fig. 8 Dmax, Dmin, and area difference betweenM1 mm andM2−10 mm as boxplot.M1;x mm indicates
that masks generated from contours with an offset of 1 and x mm are compared.
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annulus is lost by omitting contours. For the maximum diameter (Dmax), the median difference
decreases between offsets of 2 and 7 mm. Between 7 and 10 mm, the median difference improves
slightly. However, the minimum and maximum difference is larger for M1;3−10 mm than M1;2 mm.
The variance gradually increases for Dmax, Dmin, and the area with an increasing offset between
the contours.

3.3 Segmentation
The segmentation performance is evaluated using an overlap-based and boundary-based metric,
as suggested by Maier-Hein et al.21 The DSC22 is selected as an overlap-based metric and the
ASD23 as a boundary-based metric.

Tables 2 and 3 display the segmentation performance for the nnU-Net10 and the Swin
UNETR20 on the validation and testing datasets. Table 2 compares the predicted 3D masks with
the 3D masks generated from the 2D annotations (3D-3D). Table 3 analyzes the agreement
between the annotated 2D cross-sections and those extracted from the predicted 3D volume
(3D-2D). Only cross-sections present in reference and prediction were considered for the
3D-2D ASD.

The nnU-Net achieved a 3D-3D DSC of 0.90 on the test set (Table 2). Hence, the DSC is
0.03 below the inter-observer variance (Table 1). The 3D-3D DSC on the validation data is 0.01
below the DSC on the test set. The 3D-3DASD on the test set is 0.96 mm. Thus, the ASDmean is
0.28 mm worse than the inter-observer variance and 0.2 mm better than the ASD on the val-
idation set. The Swin UNETR achieves a DSC of 0.85 and 0.86 on the validation and test sets,
respectively. Hence, the DSC by the nnU-Net outperformed by 0.04. However, the Swin UNETR
ASD is 0.65 mm worse. Figure 9 shows exemplary segmentation results with high and low DSC
values.

The nnU-Net 3D-2D DSC is 0.92 on the test set (Table 3) and, hence, is similar to the inter-
observer variance (Table 1). The nnU-Net 3D-2D DSC on the validation set is 0.01 below the
performance on the test set. The nnU-Net 3D-2DASD is 1.00 mm on the test set and 1.10 mm for
the inter-observer variance. The Swin UNETR performance is similar to the nnU-Net. It achieves
a DSC of 0.90 and ASD of 1.08 mm on the test set.

Although the segmentation performance of the nnU-Net and Swin UNETR are similar, the
results indicate that the nnU-Net provides better segmentation results. Hence, we consider the
nnU-Net for the subsequent evaluations.

Table 2 3D masks generated from expert-annotated 2D cross-sections are
compared with the predicted 3D masks (3D-3D). The performance on the
validation (Val.) and test sets is shown. All values are given as mean ± SD.

nnU-Net Swin UNETR

Val. Test Val. Test

DSC ↑ 0.89� 0.05 0.90� 0.04 0.85� 0.06 0.86� 0.06

ASD (mm) ↓ 1.16� 0.71 0.96� 0.40 1.61� 0.71 1.61� 0.79

Table 3 Expert-annotated 2D cross-sections are compared with the same
cross-sectional contours resulting from the predicted 3D masks (3D-2D).
The performance on the validation (Val.) and test sets are shown. All values
are given as mean ± SD.

nnU-Net Swin UNETR

Val. Test Val. Test

DSC ↑ 0.91� 0.07 0.92� 0.03 0.90� 0.08 0.90� 0.08

ASD (mm) ↓ 1.92� 0.93 1.00� 0.29 1.16� 0.62 1.08� 0.52
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3.4 Aortic Valve Region Assessment
We evaluate parameters derived from the predicted and annotated aortic outflow region using
Bland–Altman analyses. Figure 10 compares Dmax, Dmin, and the area measured at the aortic
valve annulus and 3 mm below to characterize the LVOT. It analyzes the agreement of the derived
parameters from annotation and model prediction. Moreover, it compares the derived parameters
from the annotations of two domain experts. We define the diameter as the length of a straight
line passing through the center of mass connecting two opposite contour points. Positive
difference values hint at larger values measured for the annotation.

For the aortic valve annulusDmax, the mean is between 27.5 and 35 mm. The average differ-
ence between annotation and prediction is −0.45 mm and between the two observers is 0.25 mm.
The limits of agreement for the aortic valve annulus Dmax are ð−2.1; 1.2Þ, ð−1.1; 1.6Þ for the
inter-observer variance.

For the aortic valve annulus Dmin, the mean of measurements ranges between 22 and
28.5 mm. The average Dmin difference between annotation and prediction is −0.19 mm and
between the two observers is 0.10 mm. The limits of agreement for the aortic valve annulus
Dmin are ð−2.2; 1.8Þ, ð−2.2; 2.4Þ for the inter-observer variance. Thus, the range between the
limits is larger forDmin than for Dmax. The absolute aortic valve annulusDmin difference is above

Fig. 9 Segmentation results: (a, b) low DSC and (c, d) high DSC between reference masks and
model segmentation. 3D visualizations show the reference mask, nnU-Net prediction, and Swin
UNETR prediction. The surface distance distribution between reference and prediction is
visualized via color coding. The 2D image viewers present the 2D surface overlay of the expert
annotated masks generated from 2D cross-sections, nnU-Net prediction, and Swin UNETR
prediction.
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1.95 mm in two cases. The corresponding slices are presented in Figs. 11(b) and 11(c).
Figure 11(b) suggests that the difference is caused by the annotator not setting the contour
at the position with the largest intensity gradient. Figure 11(c) indicates that the segmentation
model identified a different contour than the annotator, potentially due to image noise.

At the aortic valve annulus, the area mean of measurements ranges between 460 and
775 mm2. The average difference between annotation and prediction is −16.5 mm2 and between
the two observers is −4.9 mm2. For the majority of cases, the absolute difference of the measured
area is below 35 mm2. However, for one case, the difference in measured area is 72.6 mm2.
This corresponds to one of the cases with a large difference for Dmin [Fig. 11(b)].

The LVOT Dmax mean of measurements is between 25.8 and 35.1 mm. The average differ-
ence between annotation and prediction is −0.15 mm and between the two observers is 0.85 mm.
For the majority of cases, the diameter difference is in the range of �1 mm. However, the largest
measured difference for Dmax is −2.25 mm. The corresponding slice is shown in Fig. 11(a). The
large inter-observer difference is caused by one measurement, resulting in a difference of 7.8 mm.
As Fig. 11(d) suggests, the observers identified different LVOT contours. For the LVOT, theDmin

means of measurements is between 18.5 and 27 mm. The average difference between annotation
and prediction is −0.05 mm and between the two observers is −0.33 mm. The limits of agree-
ment are ð−1.6; 1.5Þ for the LVOT Dmin, ð−1.3; 0.67Þ for the inter-observer variance.

Fig. 11 Parameters derived from the depicted contours result in large differences from the refer-
ence: (a) LVOT Dmax (−2.25 mm), (b) aortic valve annulus Dmin∕area (2.12 mm∕72.6 mm2),
(c) aortic valve annulus Dmin (−1.96 mm), and (d) LVOT inter-observer-variance area
(−151.06 mm). The expert annotation is marked in blue; the predicted contours are in red.

Fig. 10 Bland–Altman analysis for the aortic valve annulus and LVOT: the inter-observer variance
(IV) and agreement between annotation and prediction are displayed. Dmax and Dmin are given in
mm, and area is in mm2.
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The mean of measurements for the LVOT area ranges between 395 and 730 mm2. The aver-
age difference between annotation and prediction is −6.1 mm2 and between the two observers is
18.07 mm2. Despite one outlier [Fig. 11(d)], all absolute inter-observer area differences are
below 30 mm2.

For all analyses comparing annotation and prediction, the mean is below 0. This suggests
that the segmentation model tends to overestimate the volume.

4 Discussion
This work combines sparse 2D cross-sectional annotation and point cloud-based surface recon-
struction to train a fully automatic 3D segmentation network for the aortic annulus region and the
LVOT. In addition, we derive clinically relevant parameters from the segmented masks. We pro-
pose a 2D sparse annotation scheme to minimize the annotation complexity for tubular struc-
tures. Previous work suggested voxelwise annotation.11 By contrast, our approach only requires
2D contours at a given offset along the centerline. The proposed annotation scheme obtains an
inter-observer DSC of 0.94 and ASD of 0.68 mm. This indicates that the annotated masks are
observer-independent and reproducible. We compared the proposed annotation scheme with 3D
mask annotation using a 3D ball tool. The inter-observer variability was inferior to the 2D cross-
section annotation. As a 3D ball annotates depth image content that is not visible to the annotator,
potentially wrong image content is annotated. By contrast, 2D cross-section annotation allows
for displaying all relevant information to the annotator. In addition, 2D cross-sectional views and
annotation are well known to domain experts from clinical routines. In Fig. 5(a), the LVOT is
annotated as a smaller structure and with higher variance using the 3D ball tool compared with
the masks obtained from 2D cross-sections. This indicates that annotating cross-sections along
the centerline facilitates reproducible identification of the LVOT boundary. Moreover, the surface
of the 3D ball tool masks is bulgy compared with the masks obtained from 2D cross-sections.
The results suggest that masks obtained from 2D cross-sections reduce the inter- and intra-
observer variances compared with masks generated directly in 3D using a 3D ball tool. In addi-
tion, we evaluated the influence of the distance along the centerline between the contours. As
expected, the DSC declines with increasing the offset between the annotated 2D cross-sections
[Fig. 7 (left)]. This indicates that, by omitting contours, shape information is lost. This results in
declining accuracy of the derived parameters (Fig. 8). For example, the aortic valve annulus area
difference is −21.75 � 63.50 mm2 for M1;10 mm. However, all masks achieve a DSC above 0.9
for M1;6 mm, whereas four masks are below 0.9 for M1;5 mm. This hints at the importance of the
position of the annotated contours along the centerline. Hence, future research could identify the
optimal position of contours to reduce the total number of contours required to obtain accurate
aortic outflow region masks. This could additionally reduce the annotation effort. Moreover,
annotated 2D cross-sections could be used to train a 2D segmentation network.24 Thus, the
trained network could predict contours and decrease the offset between contours.

We propose deep-learning-based segmentation. The Swin UNETR reached a DSC of 0.86
and ASD of 1.61 mm on the test set. The nnU-Net outperforms the Swin UNETR and achieves a
DSC of 0.90 and ASD of 0.96 mm. Figure 9 suggests that the nnU-Net is superior at detecting the
boundaries along the centerline. However, no hyperparameter tuning was performed for the Swin
UNETR. Instead, the default parameters suggested by the authors20 were used.

Lalys et al.5 used deformable 3D snakes for segmentation. They reported an ASD of
1.31 mm. Using an atlas-based segmentation approach, Gao et al.8 achieved a DSC of
0.965. By contrast, Saitta et al.11 proposed neural network-based segmentation. They reported
a DSC of 0.93 and ASD of 1.10 mm. Despite outperforming our approach by 0.03 in terms of
DSC, the reported ASD is 0.14 mm worse. The DSC performance difference could be explained
by Saitta et al.11 considering a larger part of the aorta, thus lowering the proportion of boundary
regions. Additionally, Fig. 9(a) indicates that the DSC of our model is diminished by the model
detecting different boundaries along the centerline and thus not covering the whole range of
annotated cross-sections along the centerline. However, this seems to have a larger effect in the
LVOT than in the aorta. This could result from an unclear definition of the lower border of LVOT.
As Walmsley stated, there is no line of demarcation indicating the lower border of the tract.25

Another reason for diminishing the DSC is that the surfaces of the predicted masks are smoothed

Brosig et al.: Learning three-dimensional aortic root assessment based on sparse. . .

Journal of Medical Imaging 044504-11 Jul∕Aug 2024 • Vol. 11(4)



compared with the original masks [Fig. 9(a)]. However, the image suggests that the model
smooths the random variation introduced by the annotation while keeping the relevant informa-
tion. Hence, future work could investigate ways to obtain smoother surface annotations from
2D annotations without losing relevant information.

Deriving clinically relevant parameters from segmented 3D masks has been proposed in
multiple previous works.5,6,9,11 Gao et al.9 reported a Dmax difference at the aortic valve annulus
of 0.7� 2.3 mm for observer 1 and 0.6� 2.8 mm for observer 2 using an atlas-based segmen-
tation approach. This was outperformed by the neural network-based approach introduced by
Saitta et al.11 They achieved aortic valve annulus Dmax differences of 0.51� 1.69 mm.
Elattar et al.6 suggested thresholding and normalized cuts for segmentation. However, they
evaluated the aortic annulus radius instead of Dmax. For observer 1, a radius difference of
0.24� 0.70 mm was reported; for observer 2, it was 0.37� 0.82 mm. The diameter being
double the radius indicates that our approach outperforms the previous approaches. However,
our approach does not involve detecting the aortic valve annulus automatically.

5 Conclusion
This work combined sparse 2D cross-sectional annotation and point cloud-based surface recon-
struction to train a fully automatic 3D segmentation network for the aortic annulus region and the
LVOT. The proposed 2D cross-sectional annotation results in high inter-observer agreement
(DSC 0.94). Our segmentation model achieved a DSC of 0.90 and an ASD of 0.96 mm for
annotations based on cross-sections sampled with a 1 mm distance along the centerline. Our
results suggest that the model segmentations facilitate accurate and reliable measurements of
clinically relevant parameters. In future work, we want to evaluate the influence of the
LVOT anatomy on the outcome of TAVI.
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