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Abstract. Extracting surface land-cover types and analyzing changes are among the most
common applications of remote sensing. One of the most basic tasks is to identify and map
surface water boundaries. Spectral water indexes have been successfully used in the extraction
of water bodies in multispectral images. However, directly applying a water index method to
hyperspectral images disregards the abundant spectral information and involves difficulty in
selecting appropriate spectral bands. It is also a challenge for a spectral water index to distinguish
water from shadowed regions. The purpose of this study is therefore to develop an index that is
suitable for water extraction by the use of hyperspectral images, and with the capability to
mitigate the effects of shadow and low-albedo surfaces, especially in urban areas. Thus, we
introduce a new hyperspectral difference water index (HDWI) to improve the water classification
accuracy in areas that include shadow over water, shadow over other ground surfaces, and
low-albedo ground surfaces. We tested the new method using PHI-2, HyMAP, and ROSIS hyper-
spectral images of Shanghai, Munich, and Pavia. The performance of the water index was com-
pared with the normalized difference water index (NDWI) and the Mahalanobis distance
classifier (MDC). With all three test images, the accuracy of HDWI was significantly higher
than that of NDWI and MDC. Therefore, HDWI can be used for extracting water with a
high degree of accuracy, especially in urban areas, where shadow caused by high buildings
is an important source of classification error. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.8.085098]
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1 Introduction

Extracting surface land-cover types and analyzing changes are among the most common appli-
cations of remote sensing.1–3 One of the most basic tasks is to identify and map surface water
boundaries. Optical remote sensing of water bodies is based on the difference in the spectral
reflectance of land and water. Water absorbs most of the energy in the near-infrared (NIR)
and the mid-infrared wavelengths, whereas vegetation, soil, and impervious surfaces have a
higher reflectance in these wavelengths. Thus, in a multi/hyperspectral image, water appears in
a darker tone in the IR bands and can be easily differentiated from the dry land surfaces. To date,
various water body extraction algorithms for optical imagery have been developed, and they can
be categorized into four basic types:4 (a) thematic classification;5–15 (b) spectral-unmixing;16–19

(c) single-band thresholding;17,20–22 and (d) the spectral water index methods.23–34 Among these

*Address all correspondence to: Huan Xie, E-mail: huanxie@tongji.edu.cn

Journal of Applied Remote Sensing 085098-1 Vol. 8, 2014

http://dx.doi.org/10.1117/1.JRS.8.085098
http://dx.doi.org/10.1117/1.JRS.8.085098
http://dx.doi.org/10.1117/1.JRS.8.085098
http://dx.doi.org/10.1117/1.JRS.8.085098
http://dx.doi.org/10.1117/1.JRS.8.085098


methods, the spectral water index methods are the most commonly used water body extraction
methods, because of the ease of use and low computational cost.35

Even though a number of water body extraction methods have been proposed in the literature,
water extraction methods often fail to distinguish low-albedo surfaces and shadows caused by
clouds or other built-up objects in urban areas.25,36 As far as the detailed mapping of urban
water bodies is concerned, airborne hyperspectral remote sensing, which is characterized by
very high spatial and spectral resolutions,37,38 is one of the most valuable data sources for classi-
fication.39–41 However, directly applying a water index method to hyperspectral images disregards
the abundant spectral information and involves difficulty in selecting appropriate spectral bands.

In this paper, we introduce a multiple-band hyperspectral water index, called the hyperspec-
tral difference water index (HDWI), with the objectives of: (a) improving the accuracy of water
body extraction by automatically suppressing classification noise from shadow and other non-
water dark surfaces; and (b) extending the multispectral-designed water index method into the
applications of hyperspectral images.

2 Review of Shadow Detection Methods and Spectral Water
Indexes for Extracting Water Bodies

2.1 Spectral Water Indices

A spectral water index is a single number derived from an arithmetic operation (e.g., ratio, differ-
ence, and normalized difference) of two or more spectral bands. An appropriate threshold of the
index is then established to separate water bodies from other land-cover features, based on the
spectral characteristics.8 Reference 23 introduced the normalized difference water index (NDWI)
to delineate open water features using the green (band 2) and NIR (band 4) bands of Landsat TM.
Reference 16 further applied bands 3 and 5 of Landsat TM in the NDWI. Reference 25 proposed
a modified normalized difference water Index (MNDWI) that modifies NDWI by replacing band
4 by band 5 of Landsat 5 TM, and it has become the most widely used water index until now.
Reference 30 developed a normalized difference pond index (NDPI), which is expressed as the
normalized difference of the green and short-wave infrared (SWIR) reflectance (SPOT-5 bands 1
and 4, respectively). Based on the water indexes proposed by Refs. 27 and 29, Ref. 27 further
tested three groups of water indexes using bands 7 and 5, bands 5 and 4, and bands 7 and 2 of
Landsat TM/ETM+, and they suggested that the water index using bands 5 and 4 achieved the
best performance for detecting water features. Reference 34 introduced a new automated water
extraction index (AWEI), in which two water indexes are proposed using five spectral bands of
Landsat 5 TM. Table 1 lists a summary of these water indexes.

Two things need to be noted here: (a) Ref. 42 developed a different NDWI used for estimating
the water content of a vegetation canopy, which is calculated as the normalized difference of the
NIR and the SWIR bands; and (b) the normalized difference vegetation index (NDVI) has also
been used in Refs. 43 and 44 to map surface water bodies.

2.2 Spectral Shadow Detection Methods

Shadows exist in most aerial remote sensing images and high-resolution satellite images, and in
these images, shadow is generally produced by urban materials such as buildings and trees.45 The
existence of shadow affects the accuracy of land-cover classification46 and change detection.47 In
general, spectral shadow detection algorithms do not require any a priori information to dis-
tinguish shadow areas from nonshadow areas,48 and they can be directly applied to radiance
or raw data, based on certain specific spectral and spatial assumptions. Compared to the shadow
detection methods based on three-dimensional modeling,49,50 spectral shadow detection methods
have been proven to be simple and efficient in many applications.51

The spectral shadow detection methods can be organized into three categories. (a) Threshold
values from the histogram of a single spectral band; for example, Ref. 52 separated shadow from
nonshadow by thresholding at a predetermined level and postprocessing the segmented regions,
and the water bodies were distinguished by the variance of the segmented regions. (b) Values from
an arithmetic operation of two or more spectral bands, which is similar to the spectral water
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indexes. Reference 53 used a linear combination of red, green, blue, and NIR bands to detect
shadow, and the removal of water bodies from the shadow was based on the histogram of the
blue band. Reference 54 developed a spectral shape index (SSI) using the blue, green, and red
bands of QuickBird imagery to distinguish shadow from water bodies. Reference 55 constructed
a morphological shadow index (MSI) based on the relationship between the spectral-structural
characteristics of shadows and the corresponding morphological operators of panchromatic
high-resolution images. Reference 56 presented a cloud shadow detection index (CSDI) to detect
cloud shadows on homogeneous water bodies. (c) Invariant color models. In this category, the
shadow chromaticity is expressed in a two-dimensional image, instead of reducing the dimension-
ality of the shadow information to a one-dimensional histogram. A color space57 named C1, C2,
and C3 is used as a suitable color space for the shadow detection.48 Reference 58 presented a
method which uses the spectral ratio image in the hue, intensity, and saturation space to segment
shadow. Reference 59 further improved the spectral ratio of Ref. 58 and showed that their method
achieves a better accuracy. Table 2 lists a summary of these spectral shadow detection methods.

3 Study Data

For the purpose of urban water extraction, three test sites were selected. The first test image is a
subset of a Pushbroom Hyperspectral Imager II (PHI-2) image of Shanghai. The target area was
focused on Lujiazui, the city center of Shanghai, which is surrounded by the Huangpu River, and
is located at 121°29′38″E, 31°14′18″N (Fig. 1). The PHI-2 has been developed by the Shanghai
Institute of Technical Physics, China, since 2001. It has been applied in the fields of environ-
mental monitoring, geological studies, oil and gas prospecting, vegetation studies, ocean obser-
vation, city layout studies, agricultural monitoring, and forest fireproofing.60 The hyperspectral
image was required at about 12:00 a.m. (�2 h) at a relative flight elevation of about 1500 m, in
cloud-free sky, on November 26, 2002. PHI-2 has a field-of-view of 23 deg, with a spatial res-
olution of 1.5 mrad, and 246 spectral bands covering 400 to 870 nm in wavelength, with a
spectral resolution of better than 5 nm in full range.60 The spatial resolution is about 1.5 m
(under the plane spot). The spectra were calibrated between the PHI-2 data and the field spectra
at the same spots, to eliminate the atmospheric effect,61 and they were atmospherically corrected
in the ENVI QUAC module.62

Table 1 Summary of the present spectral water indexes for the extraction of water bodies.

Name Abbreviation and definition Band selection

Normalized difference
water index23

NDWI ¼ ðρgreen − ρNIRÞ∕ðρgreen þ ρNIRÞ Green: Landsat TM band 2

NIR: Landsat TM band 4

Normalized difference
water index16

NDWI ¼ ðρred − ρSWIRÞ∕ðρred þ ρSWIRÞ Red: Landsat TM band 3

SWIR: Landsat TM band 5

Modified normalized
difference water index25

MNDWI ¼ ðρgreen − ρSWIRÞ∕ðρgreen þ ρSWIRÞ Green: Landsat TM band 2

SWIR: Landsat TM band 5

Normalized difference
pond index30

NDPI ¼ ðρSWIR − ρgreenÞ∕ðρSWIR þ ρgreenÞ Green: SPOT 5 band 1

SWIR: SPOT 5 band 4

Automated water
extraction index34

AWEInsh ¼ 4 × ðρgreen − ρSWIR1Þ
−ð0.25 × ρNIR þ 2.75 × ρSWIR2Þ

Blue: Landsat TM band 1

AWEIsh ¼ ρblue þ 2.5 × ρgreen
−1.5 × ðρNIR þ ρSWIR1Þ − 0.25 × ρSWIR2

Green: Landsat TM band 2

NIR: Landsat TM band 4

SWIR1: Landsat TM band 5

SWIR2: Landsat TM band 7

Xie et al.: New hyperspectral difference water index for the extraction of urban water bodies. . .

Journal of Applied Remote Sensing 085098-3 Vol. 8, 2014



Table 2 Summary of the present spectral shadow detection methods.

Method/Name Definition Band selection Water detection

Thresholding52 Predetermined thresholding Panchromatic Variance

Thresholding53 ð2redþ greenþ blueþ 2 NIRÞ∕6 Red, green, blue and NIR
bands of aerial photograph

Thresholding
on blue band
histogram

Spectral shape
index54

SSI ¼ redþ blue − 2green Blue: QuickBird band 1 Thresholding on
SSI histogram

Green: QuickBird band 2

Red: QuickBird band 3

Morphological
shadow index55

MSI ¼ ðlocal contrastÞ∕
ðdirectionality × scaleÞ

Panchromatic None

Cloud shadow
detection
index56

CSDI ¼ (integrated spectrum of
center pixel) / (mean integrated
spectrum of the neighboring pixels)

Hyperspectral: 400 to 600 nm Thresholding
on CSDI

Invariant color
model48

C3 ¼ arctan½blue∕maxðred; greenÞ�,
saturation, value

Blue: QuickBird band 1 Thresholding on
intensity (V) and
saturation (S)Green: QuickBird band 2

Red: QuickBird band 3

Invariant color
model58

ðHueþ 1Þ∕ðintensityþ 1Þ Intensity: I in the HSI model;
V in the HSV and HCV models;
Y in the YIQ and YCbCr models;

None

Hue: H in the HSI, HSV, and
HCV models; Q in the YIQ
model; Cr in the YCbCr model

Invariant color
model59

Expf−ðhue∕½intensityþ 1Þ
−TS�2∕4σ2g

TS and σ2: predefined values;
Intensity: I in the HSI model;
V in HSV and HCV models;
Y in YIQ and YCbCr models;

None

Hue: H in the HSI, HSV, and
HCV models; Q in the YIQ
model; Cr in the YCbCr model

Fig. 1 PHI-2 false-color image of Lujiazui and the Huangpu River, Shanghai, China (R: 787 nm, G:
611 nm, and B: 551 nm).
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The second test image is a small subset of a HyMAP image of Munich, Germany (48°8′ N, 11°
36′E). The target area is the Isar River (Fig. 2). The hyperspectral HyMAP data were acquired on
July 30, 2004, with a spatial resolution of 4 m, and 128 spectral bands in the visible and IR channels
(400 to 2400 nm).63 This imagewas geo-referenced and atmospherically corrected with ATCOR 4.64

The third test image is a subset of a reflective optics system imaging spectrometer (ROSIS)
image of Pavia, Italy (45°11’N, 9°9’E). The target area is the Ticino River (Fig. 3). The ROSIS data
were acquired on July 8, 2002, with a spatial resolution of 1.3 m, and 102 available bands covering
430 to 860 nm.65 The data were atmospherically corrected but not geometrically corrected.

4 Description of the Proposed Water Extraction Method

4.1 Spectral Characteristics of Water and Shadow

The total radiance reaching a satellite sensor consists of three parts:54 (a) the contribution from
the atmosphere, i.e., the path radiance due to light scattering; (b) the reflectance of the ground
surface caused by direct sunlight; and (c) the reflectance from the scattered sunlight.

For an atmospherically corrected hyperspectral image, the contribution from the atmosphere
is corrected, and thus the first part is almost removed from the image and can be considered as
zero. For a ground object covered by shadow, the second part, reflectance caused by direct

Fig. 2 HyMAP true-color image of the Isar River, Munich, Germany (R: 635 nm, G: 543 nm, and B:
466 nm).

Fig. 3 ROSIS false-color image of Pavia, Italy (R: 788 nm, G: 628 nm, and B: 536 nm).
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sunlight, is zero, and the surface-leaving radiance only consists of the scattered sunlight of the
ground object, which is assumed to be in proportion to the reflectance caused by direct sunlight
while the sunlight is not blocked.

Typical pixel reflectance values of six major land-cover types were sampled from all the
wavelengths of test image 1. The land-cover types were: water, vegetation, bright built-up,
dark built-up, water shadow (water essentially, which is in shadow caused by buildings or
trees), and shadow. Spectral data from these pixels were used to examine the reflectance patterns
and to identify the land-cover types that affect water body extraction accuracy in urban areas,
with the aim being to design a method that accurately discriminates between such surfaces and
water, especially for shadow and water. Figure 4 shows the reflectance curves of water (red), dark
building (blue), shadow (black), and water under shadow (brown), and it can be clearly observed
that the reflectance of shadow is in proportion to the reflectance of dark building, whereas the
reflectance of water under shadow is in proportion to the reflectance of water.

In the wavelength of blue light (450 to 520 nm), both the reflectance of water and shadow
over water are lower than that of dark building and shadow. Reference 53 took advantage of this
spectral property to separate water and shadow. In the wavelength of green light (520 to 600 nm)
and red light (600 to 690 nm), the reflectance of water is higher than that of buildings. However,
in the wavelength of NIR light (700 to 850 nm), the water absorbs the majority of the sunlight,
and thus the reflectance in NIR is lower than for other types of ground surface. These spectral
characteristics are used in the majority of spectral water indexes to detect water bodies.16,23,25,30,34

However, in shadow regions, as the incoming radiance is limited, the reflectance curves of water
and shadow are mixed from 490 to 650 nm, which means that the green light does not contribute
to the development of a spectral water index for distinguishing water and shadow.

4.2 Development of the Hyperspectral Difference Water Index

The spectral curves of urban water bodies and shadow indicate that the spectral shape and the
amplitude might be adequate to separate the water and the shadow regions for an entire image.
Thus, the proposed water detection index—the HDWI—is constructed to increase the contrast
between water and other dark surfaces, as follows

HDWI ¼
�Z

700 nm

650 nm

RðλÞdλ −
Z

850 nm

700 nm

RðλÞdλ
�
∕
�Z

700 nm

650 nm

RðλÞdλþ
Z

850 nm

700 nm

RðλÞdλ
�
: (1)

This water index HDWI amplifies the contrast between water and shadowed regions by tak-
ing advantage of the differences in the spectral amplitudes, particularly in the red and the NIR

Fig. 4 The spectral reflectance curves of water and shadow.
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regions of the spectra (Fig. 4). The primary aim of the formulation of HDWI is to maximize the
separability of water and nonwater pixels through spectral integration and differencing. To
amplify the contrast between these two regions, we integrate the reflectance of these two spectral
regions and calculate the reflectance difference between these two regions.

Figure 5 plots the index value distributions of six land-cover types of test image 1 for HDWI,
NDWIHIS, and NDWI. NDWIHIS and NDWI are derived from Ref. 23, and they are constructed
for hyperspectral images as

NDWI ¼ ðGreen − NIRÞ∕ðGreenþ NIRÞ; (2)

NDWIHIS ¼
�Z

577 nm

492 nm

RðλÞdλ −
Z

860 nm

780 nm

RðλÞdλ
�
∕
�Z

577 nm

492 nm

RðλÞdλþ
Z

860 nm

780 nm

RðλÞdλ
�
: (3)

In Eq. (2), green and NIR denote single bands near the center wavelength of 535 and 820 nm,
respectively. From Fig. 5, it can be observed that when using NDWIHIS, the majority of the water
and water shadow can be separated from the other land covers; however,HDWIHIS cannot avoid-
ing mixing with shadow. Using HDWI, the separability of water, water shadow, and shadow are
greatly improved, which means that the HDWI is capable of separating water and water shadow
from other low-albedo ground surfaces.

4.3 Classification and Accuracy Assessment

To compare the accuracy of the proposed water body extraction technique with other methods,
we made preliminary tests of various water indices, including the NDWI of Ref. 23, the NDVI of
Ref. 43, the SSI of Ref. 54, and the thresholding method of Ref. 55. Based on a preliminary
evaluation, it appeared that all the indices, except for NDWI, performed poorly with our test
images. We therefore only considered NDWI for comparison with the new index proposed
in this paper. A supervised Mahalanobis distance classifier (MDC) was also included in the
comparison, as this classifier performed the best with our test images among the other widely
used methods (including maximum likelihood, K-means, spectral angle mapper, minimum dis-
tance, and parallelepiped, which had overall accuracy of 95.09%, 82.44%, 78.42%, 81.22%, and
87.14% in their respective study areas) in water classification. For the MDC, water and nonwater
training data were produced for each test image.

In order to determine the optimal threshold to separate water and nonwater pixels in HDWI
and NDWIHIS, a threshold with the minimum sum of commission errors and omission errors was
chosen. The classification accuracies of the three methods, i.e., HDWI, NDWI, NDWIHIS, and
MDC, were then assessed by calculating kappa coefficients and error matrices. The accuracy
comparison between HDWI and NDWIHIS was made at their optimal thresholds.

It is worth noting that the performance of support vector machine (SVM), a trainable machine
learning classification method, is also tested. Although the overall accuracy of SVM classifier
(99.49%) is slightly higher than that of HDWI, SVM required much more time for training,
parameter optimization, and classification. Therefore, SVM is not used in our experiments
in order to have a fair comparison with water indexes.

Fig. 5 Index value distributions of six land-cover types of test image 1, from left to right, the charts
is the representative of HDWI, NDWIHIS and NDWI respectively. Each box plot shows the location
of the 25th, 50th, and 75th percentile (boxes), and the extreme outliers (whiskers).66
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5 Results and Discussion

5.1 Water Extraction Maps

The water extraction maps by the use of the three classifiers with the three test images are pre-
sented in Fig. 6. Avisual inspection of Fig. 6 indicates that the HDWI results in a better accuracy
of surface water mapping than NDWI, NDWIHIS, and MDC. For test image 1 from Shanghai, in
particular, the shadow over water is correctly extracted by the new HDWI index. In test image 1,
the water extraction maps by the use of NDWI and NDWIHIS show noisy results. The MDC
performs well in the classification of nonwater pixels in the urban area, but it fails to classify
the shadow water bodies as water. However, for test image 2 from Munich, all the maps of Fig. 6
indicate smaller differences between the three water extraction methods. All three methods

Test
image HISHDWI NDWI  NDWI MDC 

Shanghai

Munich

Pavia

Fig. 6 Comparison of the water extraction results using the three classifiers with the three test
images.
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perform well in the extraction of water bodies. HDWI mixes up the least amount of urban built-
up areas, and NDWIHIS produces the worst result by visual inspection. For test image 3 from
Pavia, HDWI produces a better result than NDWI and NDWIHIS in suppressing shadow and
other non-water surfaces. The MDC also produces a good result by visual inspection, with
the exception of a large area in the city that is misclassified as a water body.

5.2 Classification Accuracy

The results of the mapping accuracy with the three test images are summarized in Tables 3–5.
The accuracy achieved by HDWI is higher than that of the NDWIHIS, NDWI, and MDC clas-
sifiers. The total omission and commission errors of HDWI are less than 50% of those of the
NDWIHIS, NDWI, and MDC classifiers with test image 1. With test image 2, HDWI, NDWIHIS,
NDWI, and MDC produce low commission errors, and HDWI produces very low omission and
commission errors. With test image 3, the classification accuracies for HDWI and MDC are quite
similar, whereas NDWI and NDWIHIS achieve the worst accuracy.

5.3 Shadow Distinguishing Effects

To evaluate the shadow distinguishing effect of the new proposed index in urban areas, the con-
fusion between water, water shadow, shadow, and dark building (low-albedo surfaces) was

Table 3 Classification accuracies with test image 1.

Method Omission error (%) Commission error (%) Overall accuracya (%) Kappa coefficient

HDWI 2.15 1.37 98.23 0.9647

NDWI 12.21 12.54 87.54 0.7509

NDWIHIS 1.17 6.08 96.20 0.9240

MDC 7.47 0.17 96.17 0.9234

a6411 water pixels and 6353 nonwater pixels were used for the accuracy assessment.

Table 4 Classification accuracies with test image 2.

Method Omission error (%) Commission error (%) Overall accuracya (%) Kappa coefficient

HDWI 0.02 0.90 99.46 0.9892

NDWI 1.99 0.92 98.35 0.966

NDWIHIS 4.70 0.41 97.11 0.9416

MDC 3.92 0.36 97.89 0.9380

a3346 water pixels and 4382 nonwater pixels were used for the accuracy assessment.

Table 5 Classification accuracies with test image 3.

Method Omission error (%) Commission error (%) Overall accuracya (%) Kappa coefficient

HDWI 5.10 1.18 96.65 0.9330

NDWI 4.32 6.77 93.95 0.8783

NDWIHIS 3.16 6.48 94.70 0.8934

MDC 2.73 3.64 96.56 0.9308

a14,791 water pixels and 12,779 nonwater pixels were used for the accuracy assessment.
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further analyzed. As there are no obvious shadows in test image 2 from Munich, only test image
1 from Shanghai and test image 3 from Pavia were included in this assessment. For test image 1,
water shadow, shadow, and dark building are the areas that the classification methods often fail to
classify correctly, and the results for HDWI, NDWIHIS, NDWI, and MDC are shown in Table 6.
For test image 3, no shadow is found on the water surface, and thus only shadow and dark
building are analyzed in Table 7. For test images 1 and 3, additional reference samples for
water shadow, shadow, and dark building were selected, and the numbers of pixels classified
as water or nonwater (in the blanket) are listed.

For test image 1, using the new proposed HDWI, almost all the water shadow pixels are
correctly classified as water (6985 of 7034 pixels), and only 53 shadow pixels and 89 dark build-
ing pixels are wrongly classified as water. NDWIHIS also correctly classifies the majority of the
water shadow pixels as water (6928 of 7034 pixels), but 1162 shadow pixels and 275 dark build-
ing pixels are wrongly classified as water. The NDWI performs worse than NDWIHIS except for
water shadow recognition. The MDC performs very well in the classification of water pixels,
shadow pixels, and dark building pixels, and only five shadow pixels and three dark building
pixels are misclassified. However, MDC misclassifies over 40% of the water shadow pixels into
the nonwater class (3010 of 7034 pixels).

For test image 3, HDWI also performs the best in distinguishing shadow and dark buildings,
and no shadow pixels and only 13 dark building pixels are wrongly detected by HDWI. The
numbers of misclassified pixels for NDWI, NDWIHIS, and MDC are 4, 4, and 337; and 337, 359,
and 270, respectively.

5.4 Discussion

The new proposed water index in this paper contributes to the efforts being made to apply water
indexes to extract water bodies from hyperspectral images, and to improve the accuracy of sur-
face water mapping for further environmental studies and applications. The proposed HDWI is
specially designed for urban water detection, where the shadows and the other low-albedo sur-
faces have not been correctly classified in the previous studies. HDWI uses the small differences
between dark surfaces and dark water surfaces in the red and the NIR wavelengths. It is a simple
and effective technique for enhancing the separability of water and other dark pixels, without

Table 6 Water-shadow confusion analysis for test image 1.

Method Water shadowa Shadowa Dark buildinga

HDWI 6985 (49) 53 (12,179) 89 (12,631)

NDWI 6995 (39) 5921 (6311) 574 (12,146)

NDWIHIS 6928 (106) 1162 (11,070) 275 (12,445)

MDC 3010 (4024) 5 (12,838) 3 (12,717)

a7034 water shadow pixels, 12,232 shadow pixels, and 12,720 dark building pixels were used for the confusion
analysis.

Table 7 Water-shadow confusion analysis for test image 3.

Method Shadowa Dark buildinga

HDWI 0 (4115) 13 (4592)

NDWI 4 (4111) 359 (4246)

NDWIHIS 4 (4111) 337 (4268)

MDC 7 (4115) 270 (4335)

a4115 shadow pixels and 4605 dark building pixels were used for the confusion analysis.
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using any additional data to remove them beforehand and without any color space transforma-
tion. The spectral integration is a sum over all the bands in specific wavelength range, which is a
simple calculation and would not bring much burden for computation cost. If there are large
areas needed to classify with stringent time requirements, we can choose part of bands in
the wavelength range with a wavelength step for classifying. Through experiments, we find
under the condition of good data quality, this process also can get results as good as the original
approach.

We tested the new index using three different hyperspectral sensors: PHI-2 is manufactured in
China; HyMAP is manufactured in Australia; and ROSIS is manufactured in Germany. The
images were captured in three different cities with rivers flowing through them: Shanghai,
China; Munich, Germany; and Pavia, Italy. The water extraction results show that the
HDWI index is a sensor-free hyperspectral water index, and the only requirement for the hyper-
spectral image is that the center wavelengths of each spectral band should be known. HDWI
works in the red and NIR wavelengths (650 to 850 nm), and these wavelengths are included
in all hyperspectral sensors, which will certainly enlarge the application field of this index.

Although the new water index was tested under different sensors and different cities, several
issues that may affect the results were not considered. (1) With our test images, HDWI was
operated on the reflectance curves, and the importance and type of atmospheric correction
applied in the image preprocessing stage was not considered when evaluating the accuracies.
(2) The composition of water, such as the phytoplankton, chlorophyll a, and suspended sediment
content, which may lead to a change in the reflectance patterns, was not considered and evaluated
in this paper. (3) In terms of urban areas, the open water near to high buildings may also be
difficult to classify. Our experimental data did not contain open water, and we think the difficulty
in open water also exists in the river of our experimental data (water, water shadow caused by
buildings, and building shadows on land are highly mixed). Therefore, the open water near high
buildings has not been considered.

6 Conclusions

The new water extraction index introduced in this paper is designed to improve the accuracy of
urban surface water mapping by the use of hyperspectral images. The proposed method uses a
simple technique of spectral integration and enhancing class separability without any additional
data to remove shadow and dark surface noises, which are often major causes of misclassifi-
cation in urban surface water mapping.

Based on a review on spectral water index methods, spectral shadow detection methods, and
spectral analysis of shadowed surfaces, we introduced a new HDWI for improving the water
classification accuracy in the case where the area consists of shadow over water, shadow
over other ground surfaces, and low-albedo ground surfaces. The proposed index uses spectral
integration and operates on the reflectance differences between dark surfaces and water surfaces
in the red and the NIR wavelengths. The proposed index was tested with PHI-2, HyMAP, and
ROSIS hyperspectral images of Shanghai, Munich, and Pavia. The performance of the water
index was compared with the NDWI, the NDWI applied to hyperspectral image (NDWIHIS),
and the Mahalanobis distance (MDC) classifier. From the experimental results with the three
test sites based on the proposed HDWI method, several conclusions are drawn as follows

1. HDWI is effective for the extraction of water bodies by the use of airborne hyperspectral
images, especially for the images that cover the urban areas. It works on the reflectance
from 650 to 850 nm, and it is suitable for any hyperspectral images with known center
wavelengths. Atmospheric correction is suggested in the preprocessing step for the appli-
cation of HDWI.

2. HDWI is showed to be capable of extracting water bodies by the use of different hyper-
spectral sensors. The HDWI can be used to extract surface water with a high degree of
accuracy, particularly in urban areas where high buildings cast shadows on water and
nonwater surfaces. In all three test images, the accuracy of HDWI is significantly higher
than that of NDWI, NDWIHIS, and MDC.
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3. HDWI is particularly designed for distinguishing water shadows. The experimental
results showed that HDWI correctly classifies water shadow pixels into water, and
other shadow pixels into nonwater. In addition, few pixels are incorrectly classified
by HDWI compared with NDWI, NDWIHIS, and MDC.
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