
Statistical analysis of Airborne Aero-
Optical Laboratory optical wavefront
measurements

Terry J. Brennan
Donald J. Wittich, III



Statistical analysis of Airborne Aero-Optical Laboratory
optical wavefront measurements

Terry J. Brennan
The Optical Sciences Company
Anaheim, California 92806
E-mail: tbrennan@tosc.com

Donald J. Wittich, III
Air Force Research Laboratory
Kirtland AFB, New Mexico 87115

Abstract. The Airborne Aero-Optical Laboratory has produced a large
database of aero-optical measurements with a high-speed, high-resolution
Shack Hartmann wavefront sensor. The data have been collected over a
wide range of flight conditions. An analysis of the statistical characteristics
of the subsonic and early transonic data is performed to assess the
adequacy of the spatial and temporal resolution of the data. Sample
rate requirements for a minimum variance phase estimator are also
explored. The techniques employed are validated by application to mea-
surements of optical atmospheric turbulence where results can be antici-
pated based on established Kolmogorov statistics. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction
of this work in whole or in part requires full attribution of the original publication, including its DOI.
[DOI: 10.1117/1.OE.52.7.071416]

Subject terms: Airborne Aero-Optical Laboratory; aero-optic flow; optical phase esti-
mation; optical turbulence; adaptive optics.

Paper 121515SS received Oct. 16, 2012; revised manuscript received Feb. 9, 2013;
accepted for publication Feb. 12, 2013; published online Mar. 7, 2013.

1 Introduction and Overview
There is a great deal of interest in understanding the opti-
cal degradation due to the aero-optic flow across a turret,
or other surface, mounted on an aircraft. It is recognized
that the temporal and spatial frequency content of this dis-
turbance may be such that the implementation of conven-
tional techniques of adaptive optics may not be feasible.
Consequently, there is interest in the study of active
flow control, turret window design, and predictive control
schemes for the mitigation of these effects. Predictive
control schemes are being studied to address, and perhaps
reduce, the high frame rate requirements that are
expected.1

Realistic data are required in order to make advances in
this field. Short of simulations based on computational fluid
dynamics (CFD), reliable analytic predictions are not avail-
able, and CFD simulations are always in need of validation.
A major data collection effort, the Airborne Aero-Optic
Laboratory (AAOL), has played a significant role in meeting
the need for this data. AAOL is an experimental program
with the goal of taking direct measurements of the aero-
optic disturbance around a turret on an aircraft in flight.
Data are collected over a range of flight conditions and tur-
ret-pointing angles. The experiment includes two aircraft, a
source or beacon aircraft and a receiver aircraft. Flying in
formation separated by 50 m ensures that the measured dis-
turbance between the aircraft is due to aero-optical flow and
not contaminated by freestream atmospheric turbulence. The
receiving turret is 30 cm in diameter with a 10-cm telescope
aperture and either a flat or conformal window. A more
detailed description of the aircraft and flight conditions
can be found in Ref. 2.

This study addresses the nature of the spatial and tem-
poral statistics of the AAOL data. In particular, the ques-
tions of adequate temporal and spatial sampling by the
AAOL sensor are addressed. Phase and noise-structure
functions, described in Sec. 3, are the principal tools

used here. The phase-structure function has been important
in the study of atmospheric turbulence, in part because it
has a known form that can be identified in measured
data.3 Others have looked for similarities in the nature of
the aero-optic and free atmospheric turbulence disturbances
and have concluded that they are quite different.4 In
Secs. 3.3 and 3.4 the small separation asymptote of the
structure functions of both free-space turbulence and aero-
optic turbulence is explored. For atmospheric turbulence
it is known that the asymptote is a 5∕3-power law3 and
Sec. 3.3 will present data to validate this. The aero-optic
small separation asymptote also appears to be a power
law, but with unity power. It is shown that this conclusion
cannot be made with confidence because the temporal sam-
ple rate of the AAOL data, although very high, is insuffi-
cient to capture the important small separation statistics.
The presented measured atmospheric turbulence data is
taken from the SOR turbulence sensor (SORTS), an instru-
ment at the Air Force Research Laboratory Starfire Optical
Range (SOR). These data are shown because they reveal the
importance and effectiveness of handling the measurement
error in order to properly estimate the structure function.
They also provide a good example of how the structure
function from a Shack Hartmann sensor reveals information
regarding sample rates.

The required sample rate for data analysis is generally
higher than the requirement for control or compensation.
Using minimum variance estimation as a predictive tool, a
range of control sample rate requirements are developed.
This analysis is presented in Sec. 4. A brief discussion on
the subject of data quality is presented in Sec. 5. Checking
and maintaining data integrity when the data are coming in
at a terabyte per test is a challenging, but necessary, task.

This is a purely statistical study. No attempt is made to
identify any of the physical processes that produce the mea-
surements or verification of scaling laws. Analysis of that
sort can be found elsewhere.5–9
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2 AAOL Data
AAOL data used for this study are from the full aperture
Shack-Hartmann wavefront sensor, which has 32 subaper-
tures across a 10-cm aperture. Each subaperture is 3.2 mm
in the pupil plane of the receiver. The source is a green laser
with a wavelength 532 nm. The full subaperture optical path
difference (OPD) range is �2.2 waves. There are 15 pixels
across a subaperture with about 3.4 pixels per λ∕d, the
diffraction spot size of a subaperture.

The sensor frame rate is generally 20,000 or 25,000
frames per second (fps) for fixed aircraft configuration
(both aircraft at the same velocity) and 10,000 to 15,000
frames are collected for each test. For a slewing configura-
tion, where the velocity of the two aircrafts is not the same,
the frame rate is dropped to 3,000 fps and 40,000 to 45,000
frames are collected. This analysis only considers the fixed
configuration and data taken at Mach numbers of 0.5 to 0.61.
Data used were taken in February, May, and August of 2011.
Although there are two window types used, a flat and a
conformal window, this analysis only examines the flat
window data.

Raw camera data are saved by the AAOL team and made
available for this analysis. Procedures were developed for
identifying the aperture location on the camera and the active
(illuminated) subapertures, made necessary because the
image of the pupil on the camera appears to depend on turret
gimbal angles and a new subaperture mask is required for
each geometry. The subaperture slope data is calculated
with a thresholded centroid on each subaperture. This analy-
sis is independent of that conducted by the AAOL team, and
all slope data shown here were processed from raw camera
images, with the reconstructed phase produced with a least-
squares linear reconstructor, as described in Sec. 3.1.

3 Temporal Structure Functions
The temporal structure function of a random quantity is often
useful in understanding the behavior of the quantity over
very short and very long time horizons, i.e., the temporal
asymptotes. For example, Fried showed3 that the structure
function of the optical phase produced by Kolmogorov tur-
bulence is proportional to the 5∕3 power of the time sepa-
ration for small-time separation and the proportionality
constant is related to the Greenwood frequency. There is
insufficient theory available to characterize the aero-optic
structure functions to this level, but computing the sampled
structure function of any quantity is generally beneficial.

For the statistical analysis that follows, x½k� will denote a
column vector of real quantities sampled at a discrete time, k.
Generally, Nx will denote the number of components of the
vector x and

jxj2 ¼
XNx

n¼1

x2n (1)

defines the norm, jxj, of the quantity. The right hand side of
Eq. (1) can also be expressed as

jxj2 ¼ xTx ¼ traceðxxTÞ: (2)

In the remainder of this analysis the quantity x is typically
going to be values sampled on a grid across the telescope
receiver and organized as a column vector. This could be

samples of the optical phase values on a regular grid or
Hartmann sensor subaperture slope measurements. If, for
example, x is the discrete phase with the mean removed,
then σ2x ¼ jxj2∕Nx would be called the mean-squared phase
over the aperture for that frame and the expected value over
the ensemble of frames would be the variance of the phase
over the aperture.

The temporal structure function will be defined as

S2
x½n� ¼ hjx½kþ n� − x½k�j2∕Nxi; (3)

where the angle bracket, h·i, denotes the ensemble average
over all the statistics. Of course, for sampled data, the aver-
age is simply taken over the sample statistics. The form of
Eq. (3) reveals certain assumptions about the statistical data.
Since S2

x½n� does not depend on k it is clear that the data are
assumed to be stationary in time. This assumption can be
tested and will be discussed in Sec. 4.

Expanding Eq. (3) and assuming stationarity results in

S2
x½n� ¼ 2hjx½k�j2∕Nxi − 2htraceðx½kþ n�x½k�TÞ∕Nxi (4)

¼ 2σ2x − 2htraceðx½kþ n�x½k�TÞ∕Nxi; (5)

where the second equality assumes that x is zero-mean. It is
also assumed that for a large-time separation the process is
uncorrelated, i.e.,

htraceðx½kþ n�x½k�TÞi ¼ 0; for n ≫ 1. (6)

Consequently,

S2
x½n� ¼ 2σ2x; for large n: (7)

It is natural to normalize the structure function by the
large-time separation asymptote

S2
x½n�∕S2

x½∞� ¼ 1 − htraceðx½kþ n�x½k�TÞ∕Nxi∕σ2x; (8)

which expresses the relative difference between the temporal
covariance and the variance as a function of time separation,
n, and goes from zero at n ¼ 0 to unity at n ¼ ∞.

3.1 Phase-Structure Function

The phase-structure function must be computed from the
reconstructed phase. This process, and a simple analysis
of measurement error of the reconstruction process, is
described in the following paragraphs.

A standard model of the Fried geometry10 for the
Hartmann sensor is used to define a matrix Γ that serves
to produce Hartmann slopes, s, from phase, ϕ, at the corners
of the Hartmann subapertures,

s ¼ Γϕ: (9)

Sometimes Γ is called a poke matrix, as it can be developed
by poking one phase point at a time and recording the
response in the sensor. A standard least squares reconstructor
is produced from the poke matrix by taking the pseudo
inverse

H ¼ Γ†: (10)
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From a measured set of slopes the estimated phase is
computed as

ϕ̂ ¼ Hs: (11)

The measurements as sensed by the Hartmann sensor can be
represented as

s ¼ Γϕþ μ; (12)

where μ can be taken to be a general measurement error with
zero mean. It includes the error due to sensor noise, as well as
the modeling error inherent in Γ. It will be assumed that μ is
uncorrelated between subapertures, that is,

hμμTi ¼ σ2μI; (13)

where I is the identity matrix and σ2μ is the variance of each
component of the measurement error. Combining Eqs. (11)
and (12) results in

ϕ̂ ¼ HΓϕþHμ: (14)

The measurement error propagates into the reconstructed
phase as Hμ whose variance can be calculating using
Eq. (13),

traceðhHμμTHTiÞ∕Nϕ̂ ¼ traceðHhμμTiHTÞ∕Nϕ̂

¼ σ2μtraceðHHTÞ∕Nϕ̂: (15)

Consequently the noise gain associated with the reconstruc-
tor H will be denoted

βH ¼ traceðHHTÞ∕Nϕ̂: (16)

Equation (14) reveals that the structure function of the recon-
structed phase should be related to the structure function of
the phase and the structure function of the measurement
error. This will clearly be true if phase and measurement
error are assumed to be independent, i.e., hϕ½Hμ�Ti ¼ 0.
In addition, the quantityHΓ is essentially the identity matrix.
In fact, it is known that the only two modes that are not
observed by a Hartmann sensor are piston and waffle. So
ϕ ¼ HΓϕ up to piston and waffle. Thus the structure
function of ϕ is essentially given by

S2
ϕðτÞ ¼ S2

ϕ̂
ðτÞ − S2

HμðτÞ ¼ S2

ϕ̂
ðτÞ − βHS

2
μðτÞ (17)

and it remains to determine the measurement error propaga-
tion structure function, S2

μðτÞ. Note that these expressions
use continuous-time notation with arguments in parentheses,
ðτÞ, and discrete time was expressed in Sec. 3 with arguments
in brackets, ½n�.

3.2 Noise-Structure Function

The variance of the measurement error, or “noise,” can be
estimated directly from the wavefront sensor measurement,
s. First, project the reconstructed phase back into sensor
space using Eq. (14) and a property of the pseudo-inverse,
ΓHΓ ¼ Γ,

ŝ ¼ Γϕ̂ ¼ ΓðHΓϕþHμÞ
¼ Γϕþ ΓHμ: (18)

Subtracting the reconstructed measurement from the actual
measurement using Eq. (12)

δ ¼ s − ŝ ¼ μ − ΓHμ ¼ ðIs − ΓHÞμ: (19)

Here Is is the identity on sensor measurements. The quantity
δ is often called the slope discrepancy. It is that part of the
measurement that is not reconstructed by a least-squares
reconstructor. The slope discrepancy operator is

D ¼ ðIs − ΓHÞ: (20)

From the properties of the pseudo-inverse and Eq. (12) it is
easy to see that D is a projection operator with the following
properties

DD ¼ D; (21)

DΓ ¼ 0; (22)

Ds ¼ Dμ: (23)

Again assuming that μ is spatially white [Eq. (13)], the
variance of δ is

σ2δ ¼ traceðhDμμTDTiÞ∕Ns

¼ σ2μtraceðDDTÞ∕Ns: (24)

Since D is a projection operator traceðDDTÞ is equal to
traceðDÞ. From Eq. (22) the null space of D is the range
space of Γ. The range space is of rank Ns − 2 where the
2 reflects the fact that piston and waffle are in the null
space of Γ. So

traceðDÞ ¼ Ns − traceðΓÞ ¼ Ns − Nϕ þ 2. (25)

Using this and Eq. (24) the variance of the measurement
error can be calculated

σ2μ ¼
Ns

Ns − Nϕ þ 2
σ2δ . (26)

The fraction in this expression is simply the ratio of vector
space dimensions. The numerator is the dimension of the
measurement space and the denominator is the dimension
of the slope discrepancy subspace and the ratio is the scaling
up of the slope discrepancy variance to measurement (or
slope) space. This ratio will be denoted

βD ¼ Ns

Ns − Nϕ þ 2
: (27)

Equation (26) says that if the measurement is white noise
with unity variance then the slope discrepancy variance
is 1∕βD.

The variance scaling expressed in Eq. (26) obviously
holds for the structure function as well

S2
μðτÞ ¼ βDS

2
δðτÞ: (28)
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Substituting Eq. (28) into Eq. (17)

S2
ϕðτÞ ¼ S2

ϕ̂
ðτÞ − βHβDS

2
δðτÞ: (29)

Thus the noise corrected phase-structure function can be cal-
culated from the reconstructed phase-structure function and
the properly scaled slope discrepancy structure function.

3.3 Atmospheric Turbulence

Before applying the structure function analysis approach to
AAOL data, the validity of the approach will be demon-
strated using data collected over horizontal propagation
paths, where the disturbance is purely atmospheric turbu-
lence. A solid theory in weak turbulence is available from
which comparisons with measurement data can be per-
formed. The phase-structure function can be calculated
under the assumption of Kolmogorov turbulence and the
short time separation asymptote is known to be3

lim
τ→0

S2
ϕðτÞ ¼ 28.4ðfGτÞ5∕3; (30)

where fG is the Greenwood frequency. If the structure func-
tion is calculated from measurement data and reveals the
5∕3-power law, then Eq. (30) can be used to estimate the
Greenwood frequency. The presence of the 5∕3-power law
also indicates the validity of the assumption of Kolmogorov
turbulence. A great deal of data has been taken with an
instrument at the Starfire Optical Range (SOR), which is
called the SOR turbulence sensor (SORTS). A publication
on this instrument and the data collected will be available
in the near future. The instrument is a 32 × 32 Shack
Hartmann wavefront sensor in a Meade 40 cm telescope.
It is typically used with a HeNe laser as a point source
and has about �3 waves of linear range per subaperture
and 18 pixels across each subaperture. It is not unlike the
AAOL wavefront sensor, except for a much larger aperture
and a telescope without struts. The absence of the struts

improves the quality of the collected data in several ways.
Most obviously the absence of struts increases the percent-
age of unobscured subapertures, but it is also advantageous
to compute various slope-related quantities, such as the slope
discrepancy, on a connected region.

Figure 1 shows two examples of the application of
Eq. (29) to data collected with SORTS. Figure 1(a) was
taken over a 50-m path in weak turbulence. For this case
the Fried coherence length, r0, is 15.6 cm and the
Greenwood frequency is 6.9 Hz. In Fig. 1(b) the structure
function estimate is shown for strong turbulence over a
3200-m path resulting in r0 ¼ 1.0 cm and fG ¼ 121 Hz.
Both figures are plotted on the same scale in units of
waves.2 Each of the three structure functions are shown in
the figures. The reconstructed phase is the dashed curve.
The estimated noise (or measurement error) structure func-
tion is the dash-dot curve and the difference is the solid
curve. The difference, labeled noise-removed structure func-
tion, shows a strong small τ asymptote of τ5=3. The dotted
curve is a 5∕3-power law plotted for reference. These
data are among the best collected by SORTS, in terms of
agreement with theory, but they are not atypical. The 5∕3-
power law is almost always present, but does not always per-
sist over as many decades as seen in these data. The theory
underlying this analysis assumes weak turbulence, but its
application to the very strong case in Fig. 1(b), where the
Rytov number is estimated to be about two, continues to
produce valid and interesting results.

3.4 AAOL Structure Functions

Having demonstrated the value of examining phase-structure
functions for atmospheric turbulence, the AAOL data will
now be considered. Data from flight campaigns conducted
in February, May, and August 2011 have been studied. The
data in February and May were taken in the subsonic regime
at a Mach number of 0.5. The August data approach the tran-
sonic regime with Mach numbers between 0.6 and 0.65.
According to Ref. 11, the turret is expected to have a
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Fig. 1 Phase structure function for atmospheric turbulence.
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freestream critical Mach number around 0.55, above which
portions of the local air flow (i.e., near the turret) exceed the
speed of sound. Analysis of the optical data for the con-
formal window turret at Mach 0.6 showed the presence of
a shock on the window when viewing through the region
of minimum pressure,5 indicating transonic flow.

Figure 2 shows representative data for Mach 0.5 and
0.61. These were taken with a flat window. A range of lines
of sight (LOS) or viewing angles between 98 deg and
115 deg are shown. The LOS is the composite angle between
the turret pointing angle and the reverse flow direction. This
angle has been defined and shown to be useful by other
researchers as a single parameter for characterizing features
of the optical flow.2,5,7,8,11 It is given by

cosðLOSÞ ¼ cosðAzimuth AngleÞ cosðElevation AngleÞ:
(31)

The features of the data in Fig. 2 are clearly different than
what has been observed for the case of atmospheric turbu-
lence in Fig. 1. The noise, or measurement error, structure
functions are well below the phase-structure function.
Consequently the noise-corrected structure function (differ-
ence of phase and noise) has not been displayed as it was for
the atmospheric turbulence data. Looking at the phase-struc-
ture functions a number of conclusions can be drawn. At
small time separation the phase-structure function has not
yet reached a noise floor and looks more like a unity power
law than the atmospheric τ5∕3. A plot of τ1 is shown as a
dotted curve for reference. For the atmospheric data the
small separation noise floor was clearly seen especially for
the weak turbulence case. The existence of this floor implies
that the sampling is sufficiently fast that the difference of two
adjacent frames of data is dominated by noise, i.e., the dis-
turbance has not changed in one frame so it is subtracted out.
This cannot be concluded for the AAOL data. In no case
were the data observed to reach the noise floor in the
February, May and August data of 2011. Recalling that the

large separation asymptote is twice the variance from Eq. (7),
these figures show a large range of variances. In terms of the
relative covariance error which according to Eq. (8) is the
ratio of the structure function to the large separation asymp-
tote these data show values of between 1∕5 to 1∕3.

It can be concluded that the AAOL measurements do not
capture all of the highest temporal frequencies at the current
frame rate. The May data (Mach 0.5) were taken at 20 kilo
frames per second (kfps) and the August data were taken
at 25 kfps. There would be value in going to higher frame
rates. For reference, the atmospheric data taken with SORTS
were collected at 8 kfps. A simple extrapolation of the
phase-structure functions in Fig. 2 imply that frame rates
of five to six times higher than the AAOL frame rate would
be required to reach the noise floor. This would be 100 to
125 kfps.

The phase-structure functions all tend to flatten out for
time separations greater than one millisecond. This implies
that the phase is uncorrelated over time differences greater
than a millisecond. Consequently, the sample rate for any
adaptive optics system, even using advanced predictive tech-
niques, must be greater than 1000 fps.

Looking at the noise-structure function leads to additional
insights. These are basically flat or just barely beginning to
attenuate at the smallest time separations. As was described
in Sec. 3.2 the term noise is used in a general sense and using
the term measurement error might be more appropriate. The
noise-structure functions in Fig. 1 due to atmospheric turbu-
lence show two plateaus. The small separation plateau is due
to temporally uncorrelated noise. The turbulence has not
changed between two consecutive frames relative to the
pure noise level. As τ, the time separation, increases the
noise-structure function transitions to the next plateau.
The turbulence contribution in the frame differences grows
with separation and couples into measurement error. The sec-
ond plateau is reached and maintained at the time separation
when the turbulence is uncorrelated with its level depending
on the subaperture size. It will be higher for larger subaper-
tures, since higher frequency phases will not be sensed well
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Fig. 2 Aero-optic phase structure functions.
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as the resolution of the sensor decreases. In fact, for
Kolmogorov turbulence it will grow as d5∕3, where d is
the width of the subaperture. This is very clear for the weak
turbulence case in Fig. 1. The strong turbulence case has a
high Greenwood frequency and the small separation plateau
is not fully reached at the sample rate of the data. In the
atmospheric data the transition to the upper plateau occurs
at about the same place that the phase-structure function
begins to level off. Compared to the atmospheric data, the
aero-optic noise-structure function is very flat with little
fall-off as the phase falls off. This, plus the observation that
the noise does not vary from case to case as much as the
phase varies, suggests that the noise is essentially just ordi-
nary signal noise with little coupling of disturbance into the
measurement error. From this it can be concluded that the
spatial resolution of the sensor is more than sufficient to
accurately measure these disturbances. In fact, a future
design could consider fewer subapertures in order to achieve
higher temporal frame rates.

In developing predictive control schemes the repeatabil-
ity of propagation statistics, given the same defining param-
eters, is assumed and the sensitivity to small changes in
defining parameters is expected to be small. Predictive con-
trol schemes may be based on developing a library of con-
trol gains that can be scheduled according to a small set of
parameters. These parameters would certainly include
Mach number and turret pointing angle, but may require
other parameters, as well. Such a library would be, of
necessity, based on discrete values of the parameters and
the scheduled gains should perform well over small toler-
ances around the discrete values. Some approaches are
adaptive and have the capability to slowly update their
gains as conditions change. In either case, it is reasonable
to hope that no change in parameters would result in no
change in statistics, given that the right set of parameters
are known and small changes in parameters would produce
small changes in statistics. To the author’s knowledge, no
comprehensive study has considered this issue although
there have been suggestions that AAOL repeat some of
the flight conditions from previous campaigns and compare
the results with earlier data.

Upon searching the available data two cases were dis-
covered that had been collected under nearly identical con-
ditions. They were both collected at Mach 0.5, with a LOS
of 98 deg and very similar azimuth and elevation angles.
Their structure functions are shown in Fig. 3. One of them
has a phase-structure function that is 18% higher than the
other and a noise-structure function that is 41% higher than
the other. This difference could be the result of something
as innocuous as an error in recording the parameters but it
may suggest a level of sensitivity of the disturbance to small
changes in the geometric parameters. There are factors in
the equipment that could produce different measurement
statistics, such as an optical alignment difference or a defo-
cus in the lenslet array. However, these cases were run con-
secutively as if the source laser were turned on, then off,
then on, and then off without any change in flight condi-
tions of the two aircraft. Repeatability is hard to test on
the SORTS sensor because nature always gives us a differ-
ent turbulence distribution (C2

n) along the path. Even if two
turbulence cases give the same r0 they might differ signifi-
cantly in other parameters. The aero-data should only

depend on Mach number, turret geometry and pointing
angles.

Gordeyev et al.12 showed that, for a two-dimensional
(2-D) turret in a confined tunnel, a sharp change in the
higher-order aero-optics occurred around LOS ¼ 98 deg
as the flow transitions from partially to fully separated.
Porter et al.8 showed that, for a three dimensional (3-D) tur-
ret, the same phenomenon depended on both elevation and
azimuth, even for the same LOS. However, Porter’s analysis
also suggested that the fluid dynamics should not be terribly
sensitive at these particular combinations of azimuth and
elevation, which are viewing fully separated flow, but in
the region where higher-order OPD is declining due to aper-
ture effects. The small changes in angle could certainly
account for some of the changes in the statistics, but the
authors cannot offer a full explanation for the discrepancy
at this time.

4 Wavefront Estimation
The temporal structure function naturally contains informa-
tion about wavefront estimation. If ϕ½k� is a sequence of
wavefront phases across an aperture then S2

ϕ½m� is the
mean-squared error that would be experienced if the current
frame of data is estimated by the frame of data that is m
frames prior. In particular S2

ϕ½1� is the mean-squared error
when the current frame is estimated by the previous
frame. Note that this discussion is using discrete time and
the real time depends on the sample rate. The estimation
error represented by S2

ϕ½m� will be called m frame hold.
Only one frame hold will be presented in this analysis but
variable frame rate will be considered.

Since the wavefront data were taken at a very high rate,
either 20 kfps or 25 kfps, it can be subsampled at different
levels to simulate the estimation performance at different
frame rates. For example, the subsampled set fϕ½k�∶ k ¼
1∶ m∶ Nϕg simulates frame rates of 20, 10, 6.67, and
5 kfps when ϕ is sampled at 20 kfps and m ¼ 1, 2, 3,
and 4.

A more optimal estimator than 1-frame hold will also be
considered. This will be a standard minimum variance esti-
mator which uses the matrix gain A that minimizes
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Fig. 3 Aero-optic structure functions for two, nearly identical, geom-
etries at Mach 0.5.
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J ¼ hjϕkþ1 − Aϕkj2i
¼ traceðhðϕkþ1 − AϕkÞðϕkþ1 − AϕkÞTiÞ
¼ traceðhϕkþ1ϕ

T
kþ1i − 2hϕkþ1ϕ

T
k iAT þ Ahϕkϕ

T
k iATÞ:

(32)

The notation

Cm;n ¼ hϕmϕ
T
n i (33)

will be used for the covariance matrices. Note that
Ckþ1;kþ1 ¼ Ck;k since stationarity is assumed. With this nota-
tion J is expressed more simply as

J ¼ traceðCk;k − 2Ckþ1;kAT þ ACk;kATÞ: (34)

Taking the partial derivative of J with respect to A produces

∂J
∂A

¼ −2Ckþ1;k þ 2ACk;k: (35)

Setting this to zero and solving for A produces the minimum
variance gains

A ¼ Ckþ1;kC−1
k;k: (36)

To apply this estimation process, a sequence of AAOL
reconstructed phases will be tilt and piston removed and
then used to numerically compute the sample covariances
Ck;k and Ckþ1;k. Three estimation techniques will be evalu-
ated with the following error expressions:

1-frame hold∶
1

N − 1

XN−1

1

ðϕkþ1 − ϕkÞ2

optimal∶
1

N − 1

XN−1

1

ðϕkþ1 − AϕkÞ2

split data optimal∶
1

N∕2 − 1

XN−1

N∕2þ1

ðϕkþ1 − AsϕkÞ2.

The “split data” version of the minimum variance estimate
is a more realistic evaluation of the optimal estimation error.
In this version the covariance matrices and optimal gain, As,
are calculated from the first half of the measurement
sequence and evaluated on the second half. This is a method
of handling the problem of a sample data covariance operat-
ing on the same data that were used in its calculation and
achieving unrealistically favorable results. With finite sam-
ple sizes this type of independent evaluation of performance
is necessary. If the optimal and split data optimal perfor-
mance are close then the data are reasonably stationary
and there are likely sufficient samples in the calculated
covariance.

The estimation performance will be plotted for a collec-
tion of Mach 0.5 AAOL data taken in 2011. It will be plotted
as a function of the view angle, LOS. The interest here is in
comparative errors, so rather than plot the mean-squared
error a simulated Strehl ratio will be calculated via the
Marechal approximation

S ¼ expð−σ2EÞ; (37)

where E is the residual phase estimation error in radians. All
the data that will be considered were collected at 20 kfps
so performance will be evaluated at 20, 10, and 5 kfps by
decimating as described above.

Another simplification will be made to expedite the
calculations. The phase vectors are typically over 700

40 60 80 100 120 140
0.4

0.5

0.6

0.7

0.8

0.9

1

LOS (deg)

S
tr

eh
l R

at
io

(a) Absolute Strehl

40 60 80 100 120 140
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
at

io
 o

f S
pl

it 
S

tr
eh

l t
o 

O
pt

im
al

 S
tr

eh
l

LOS (deg)

(b) Relative Strehl

Optimal
Split−Data Optimal

Fig. 4 Comparison of full optimal with split-data optimal.

Optical Engineering 071416-7 July 2013/Vol. 52(7)

Brennan and Wittich: Statistical analysis of Airborne Aero-Optical Laboratory optical wavefront measurements



components long. Analysis of the data shows that over 98%
of the power is contained in the first 200 Karhunen Loeve
modes. So the coefficients of this 200 dimensional modal
subspace will be used rather than the roughly 730 dimen-
sional phase space. (The Karhunen-Loeve decomposition
is referred to as the Proper Orthogonal Decomposition by
other researchers in this field7,13)

The first item to be noted from this analysis of the data is
shown in Fig. 4. Here the “Full optimal” and “Split-Data
optimal” are shown as a function of LOS for the 20 kfps data.
In Fig. 4(a) the Strehl performance is shown and in Fig. 4(b)
the ratio of split to optimal Strehl ratio is shown. The data
show that the split data performance is greater than 95% of
the full optimal performance in almost all cases except for
one outlier at a LOS of about 115 deg. This results in a strong
conclusion that the data are statistically stationary over the

sequence. That is, the sample statistics of the first half of
the sequence is in good agreement with the full sequence.
In the remainder of the performance evaluations only the
more realistic split-data optimal will be presented.

The estimation performance data are shown as Strehl
ratios in Fig. 5(a) for the 20 kfps data. This shows how the
general performance degrades with increasing LOS angle.
An immediate observation from this data is that the split-
data optimal always performs better than the 1-frame lag,
except perhaps at forward looking angles where the perfor-
mance is similar. The 1-frame lag always performs better
than open loop.

To better quantify the relative performance and to assess
the performance as the frame rate is reduced consider
Fig. 5(b) through 5(d). In these figures the Strehl Ratio
of the optimal and 1-frame lag estimators is divided by
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the open loop Strehl ratio indicating the performance
improvement available with predictive methods. The results
for a frame rate of 20 kfps are shown in Fig. 5(b). At for-
ward looking angles the performance gains of both optimal
and 1-frame lag estimators are about the same. As the LOS
angle increases the performance improvements increase
and the optimal estimates are clearly better than 1-frame
lag estimates. At the lower frame rate of 10 kfps, shown
in Fig. 5(c), the optimal estimates perform almost as
well as the 20 kfps performance but the 1-frame lag
loses performance and for LOS angles between 80 deg
and 110 deg the 1-frame lag performance is often worse
than open loop. Finally, Fig. 5(d) shows results for
5 kfps where the 1-frame lag almost always performs
worse than open loop with performance becoming much
worse than open loop for backward looking angles. This
implies that a single subaperture measurement is essentially
uncorrelated in time at a frame rate of 5 kfps. The optimal
estimation continues to perform better than open loop, at
least for angles greater than 80 deg. The optimal estimator
is able to estimate a subaperture measurement by extracting
information from adjacent subaperture measurements even
at this slowest rate.

5 Data Integrity
When the available data from an experiment are limited, it is
feasible to carefully examine the data and validate their
integrity in order to develop a high level of confidence in
the results. When the data are measured in multiple terabytes
it becomes nearly impossible to look at each data case for
anomalous behavior. The tendency is to turn the crank and
crunch the data with a batch processing approach. The
AAOL has been collecting data for two years and has accu-
mulated a very large, and still growing, database. Over this
time the methodology for experiment execution and data col-
lection has certainly matured and important lessons continue
to be learned that increase the confidence in the reliability of
the results. Nonetheless it remains prudent to spot check the
raw, intermediate, and final processed results on a regular
basis to minimize the possibility of new, or old, problems
creeping into the data.

No data are ever perfect but it is generally possible to
quantify the impact of data variations and anomalies on
important numerical results. In examining the 2011 data a
significant level of saturated pixel data was observed. This
was particularly problematic in the February data. Tech-
niques were developed to estimate how this would impact
results like the structure functions and Strehl estimates that
have been presented here and it was found that the observed
level of saturation had an impact of only a few percent. In
fact, the two data sets in Fig. 3 both have some level of sat-
uration but not enough to account for the unexpected
differences between them. Our analysis of the raw camera
data also revealed amplitude scintillation, the cause of which
has not yet been determined.

6 Conclusions
The goal of the AAOL program is to understand the nature of
aero-optic disturbances over a wide range of conditions and
develop techniques to mitigate the optical degradations. To
this end the AAOL data have proven to be an extremely valu-
able asset. Using the tools of structure-function analysis and

optimal estimation, it has been demonstrated that the spatial
resolution of the AAOL wavefront sensor is more than
adequate for disturbance characterization at least in subsonic
and early transonic regimes. The temporal resolution remains
challenging and it would be desirable to increase the frame
rate of the AAOL sensor by a factor of five or six. This means
100 to 125 kfps. This may be doable with current camera
technology by reducing the spatial sampling by a factor
of two. Nonetheless the current data were shown to be
adequate for studying phase-estimation sampling require-
ments for development and implementation of predictive
control schemes. These results indicate that sample rates
for closed loop control can be dropped to as low as
5 kfps when a predictive estimation and control scheme is
implemented. Traditional control will fail at any rates less
than 10 kfps with only marginal performance at 10 kfps.
Of course, as mentioned, these conclusions only apply to
subsonic and early transonic data and do not address the
issues of slewing turrets. Repeatability and sensitivity to
parameters are issues that need continued study as evidenced
by the data in Fig. 3.
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