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1 Introduction

Polarimetric imaging is the measurement of the spatially
resolved polarization of light. Like spectral imaging, polar-
imetry adds additional layers of information to traditional
intensity imaging. While the spectral measurements often
carry information on material or chemical composition,
the polarimetric measurements often carry information on
surface properties. In order to explore this information, the
polarization measurements can be mapped to the realm of
the human visual system in a process called visualization.
Since the beginning of polarization imaging,' researchers
have been trying to figure out ways in which to “see” what
is being measured. This is indicative of our preference
toward using our incredible built-in pattern-finding machine
in order to process information. It seems, however, that
the fascination has primarily been focused on what we can
see rather than how. Thus, in the literature, the topic of visu-
alization is often treated as an afterthought. While many
sources include short reviews of a few polarization visualiza-
tion strategies,”® no large-scale review has been attempted.
In addition, no review has attempted to bring the wealth of
knowledge accumulated in the general field of data visuali-
zation to the application of polarization.

One way to view the purpose of data visualization is as
the process of asking and answering questions between the
data references or independent variables, and characteristics
or dependent variables. Andrienko and Andrienko’ separate
these questions into direct and indirect search queries. A
direct query would be “for this reference, what is its charac-
teristics?” while an indirect query would be “where are the
references with this characteristic?” The effectiveness of
data visualization relies on exploiting the pattern-finding
processes of the human visual system in order to answer
these queries in the most efficient and accurate manner. The
visualization can be used to confirm or communicate the
presence of known relations or to conduct an exploratory
analysis looking for the presence of unknown relations.
In the exploratory stage, it can be beneficial to approach
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the data using many iterations of different visualizations in
order to find those relations.

Snik et al.® point out that the polarization variables them-
selves are not always the end goal but are instead often used
to produce information that the user cares about. They also
discuss how important the users’ expertise in polarization is
to designing and constructing a polarization visualization
system. While many of the topics discussed in this review
are broadly applicable to these situations, we will assume
that the user is interested in visually portraying polarization
as data. While this review is focusing on data visualization,
there are other paradigms that can be applied to polarization.
For example, Ratliff and Tyo® describe two methods for
seamlessly blending the polarimetric information into the
intensity image as a way to depict how polarimetric imaging
can produce greater detail than unpolarized imaging. That is,
the final image does not differentiate between information
from polarized or unpolarized regions. Instead, polarization
is used in a way to add detail to the original image that is
easily accessible to those unfamiliar with polarization. They
offer two heuristic methods to accomplish this, although
much more can be done using this idea. Another paradigm,
particularly in the field of biology, is portraying as closely as
possible the experience of polarization vision using our
polarization-blind human visual system. The well-known
Bernard and Wehner paper uses this paradigm to relate
polarization vision to color vision.” How and Marshall'® dis-
cuss how objects could be detected by an organism’s polari-
zation visual system using a metric of polarization distance,
analogous to color difference. While these paradigms are
useful for other purposes, they are out of the scope of this
review on data visualization.

2 Univariate Colormaps

2.1 Color

Color is one of the most ubiquitous tools for data visualiza-
tion, given how much of our visual system is devoted to
processing it. The multidimensional nature of color vision
allows many different ways to encode information, but not
all of them are effective. The effectiveness of any given
color visualization is a product of the color model in which
it was designed. In short, a colorspace is any multidimen-
sional way in which color can be coded: sSRGB, HSV, etc.
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A color appearance model, on the other hand, encodes the
color in terms of how it appears. For this review, we will
be using the perceptually uniform color model CAMO2-
UCS.!"! In a perceptually uniform space, Euclidean distances
between coordinates are meant to represent perceived color
differences. In this section, we use both specific terms using
this colorspace, as well as the more general terms. When the
terms lightness (J'), colorfulness (M), and hue (lowercase
h) are used, they are referring to the cylindrical coordinates
of CAMO2-UCS. For this review, the terms luminance,
brightness, and achromatic channel are all interchangeable
with one another, as are the terms saturation, chromatic mag-
nitude, chroma used interchangeably here. Note occasionally
we will use terms specific to hue, saturation, value (HSV)
colorspace, such as (uppercase) H, S, V. When these are
used, they are specific to their definitions given in HSV
and not the general concepts they represent. Additionally,
the term isoluminant refers to when the achromatic channel
is constant.

The simplest, most accessible, and most common form of
polarization visualization is the univariate (single variable)
colormap. The technique consists of matching the value
of the variable to an ordered color array in order to construct
a color image out of a 2-D array of values. Every value is
represented by a single color in the color array. This method
of colormapping is usually a built-in function to many data
processing packages and is customizable by the myriad of
available colormaps within the package, from online resour-
ces, or by creating a custom color array. With the increased
availability of colormaps in general, there is an increase in
maps designed both poorly and well in terms of supporting
the required analysis tasks. Some maps are designed purely
for aesthetics, others for function; however, not all maps
designed for function have a basis in an accurate perceptual
color model. While there are some good examples*!'*!3
of the use of effective colormaps used in polarization,
the vast majority of colormaps used are either the rainbow
colormap,'*!” which has been theoretically'®?" and
experimentally’! shown to be ineffective for most analysis
tasks, or a colormap inappropriate for the data structure.”>>*
Both reviews by Zhou and Hansen” and Bernard et al.*°
vide a general review of colormaps in visualization.

pro-

2.2 Data Types

The literature on colormaps does not show a common
classification method, but the main attributes for choosing
a particular colormap rely on data type and task.”?’ The
most common classification on data types used is nominal,
ordinal, interval, and ratio,””?® and other classifications
include discrete,?® continuous, monotonic, diverging,30 peri-
odic,” and high and low spatial frequency.”® Variables may
be classified by more than one of those listed, as they are not
all necessarily mutually exclusive.

Discrete versus continuous: Discrete data types allow for
a set number of possible values or categories. Continuous
data allow for any value within some range. Continuous
data can be displayed as discrete by restricting the number
of colors.

Categorical: Also known as nominal, this data type has no
underlying order. Colormaps for categorical data should
maximize the ability to distinguish between categories with-
out following a perceptual order. This can be realized by
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selecting a wide variety of distinct hues. One example of
categorical data for polarization is target detection, where
regions are nominally labeled as target, background, or other.

Interval: This data type has the quality, where the interval
between values is important. If the purpose is to represent
the intervals between values as equal, the perceptual color
difference should correspond to the difference in values.”’
An exception to this rule can occur where the difference
in values can be represented by nonlinear perceptual
differences in order to improve differentiation.’ Interval
data can be discrete or continuous.

Monotonic: While data can be organized in an infinite
amount of ways, the most common ways are monotoninc,
diverging, and periodic. These labels describe fundamental
structures within the context of interval or ratio data.
Monotonic structure is the most common, where values
are ordered from low to high. When this order is meant to
be observed, the colormap must also have a monotonically
increasing perceptual order. For color, this can be achieved
via either the achromatic channel (lightness, brightness, and
intensity) or by the magnitude of the chromatic channel (sat-
uration, chroma, and colorfulness). Hue is not an effective
channel for ordering because it has no inherent beginning
or end. Even though some orderings can be constructed,
such as the spectrum or green—yellow—red of a stoplight,
there is no purely perceptual reason for these constructions.
Unlike saturation or luminance, a given set of hues will be
arranged by users very inconsistently. >’

Diverging: This structure has values that fall between two
extremes with a critical point separating the two regions.
Functionally, colormaps for diverging data structures can
be viewed as a concatenation of two monotonic colormaps
in opposite directions with a common color at the critical
point. The critical point often has some physical or math-
ematical significance, such as the zero value separating
positive and negative values. By using a colormap with
a diverging structure, the observer is easily able to tell
which side of the scale each value is on. The critical point
can also be a way to establish dichotomies such as high or
low without necessitating that the critical point has any
signiﬁcance.34 In this sense, even data that is naturally clas-
sified as monotonic can be reimagined as diverging toward
either the upper end or the lower end. This can be very effec-
tive for indicating whether values should be classified as
high or low by the observer. The drawbacks to this would be
oversimplification by imposing such a dichotomy, neglect
of the importance of middle ranged values, and difficulty
comparing values by their relative difference. This over-
simplification can be useful when a more rigorous analysis
is not needed, such as in presentations or in a learning
environment.

Periodic or cyclic structure has no beginning or end;
instead the values indicate a phase, angle, or orientation.
When the colormap is listed in an array, the arbitrarily
determined endpoints must be the same color to avoid
discontinuity.

Spatial frequency: Data structures can also be classified
by whether the data contain high spatial frequencies. At
low frequencies, there is no issue with relying on chromatic
channels alone, whereas the human visual system needs
the achromatic channel to discriminate shapes and structures
defined by high spatial frequency.*> Thus, colormaps for
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such data must include a significant amount of achromatic
variation in order to express form.?”%

2.3 Task Types

In addition to the data type, colormaps are most effective
when they are designed for particular tasks. Tasks can
vary from low level, e.g., reading values, to high level,
e.g., qualitative questions, complex pattern recognition, or
decision-making. High level tasks may utilize several low-
level tasks and are generally more specific for supporting
some conclusion. The low level tasks most common for
colormaps have been extensively discussed in the literature.
They include comparison, identification, localization, and
segmentation. Bernard et al.”® provide a large number of met-
rics in order to quantitatively analyze colormaps for support-
ing a variety of tasks.

Comparison: This deals with assessing relative
differences between data points as well as recognizing the
order of the values. Queries that can be answered by the com-
parison task are “is this value higher or lower than that
value?” and “is the value increasing over this region?”
For this task to be supported, the colormaps must maintain
a linear relationship between perceptual distance in either or
both achromatic or the chromatic magnitude channel (color-
fulness, saturation, and chroma). Figure 1(c) shows a color-
map constructed by linearly increasing both lightness and
colorfulness in a single hue. Using this colormap, the
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magnitude of the value of the points in the plot can be rel-
atively compared to one another. For example, given two
points, if there is a difference between their values, it is
immediately obvious which one is greater. The amount of
difference will be proportional to the perceptual difference.
Figure 1(b) shows a comparison colormap using a diverging
data structure assumption. For any value, the user can com-
pare magnitudes from the critical point using the relative
colorfulness difference.

Identification and look-up: Identification has observers
identify values with a certain characteristic. This task sup-
ports description search queries like “where are all areas
where the value is the same as this one?” and “which value
is the most prominent in this set of data?”” Similarly, look-up
is a type of identification that allows users to look-up the
value of a data point. A look-up task describes the query
“what is this value?” or “where are the areas with this chosen
value?” Look-up is one of the most prominent tasks because
it is a method for visually “reading” the data. In this way, a
look-up task would necessitate a key, while identification
would not. For color, hue is an effective channel for identi-
fication and look-up because, as opposed to the magnitude-
based chromatic and achromatic channels, hue is an identity
channel without an implicit ordering.* It is instinctive to see
all green areas as having the same characteristics, and that
they have different characteristics to areas that are blue.
The same cannot be said for two different gray levels or
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Fig. 1 Colormaps for different tasks. (a) Identification and/or look-up task. Each data point is categorized
by its hue so that points with similar values can be located. Values are also easily looked up given the
key. (b) Combined comparison of extreme and identification of sign. Here, the hue indicates the value of
the sign, and the colorfulness indicates how close to either extreme a value is, allowing comparison of the
magnitude of extremeness. (c) Comparison task. Colormap increases in both lightness and colorfulness,
indicating a clear perceptual progression from low values to high values, allowing comparison of relative
distances in value. (d) Localization task for the value 0.5. Here, this value has been given significance so
that the values close to 0.5 are highlighted. Data are a random selection of 100 points from a set of 200 by
200 points with random values that have been smoothed with a Gaussian filter to create random clusters.
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two saturation levels that differ by the same amount.
Additionally, because the hue channel is not inherently
ordered, the distinctiveness between hues is not strongly
related to the amount of hue difference if the difference is
large enough. For example, blue, red, and purple hues are
all sufficiently distinct from green that the amount of
hue difference does not result in the perceptual ordering of
the hues; that is, they are characterized by their hue and not
by their proximity to green. This attribute is effective for
identification because it perceptually categorizes data and is
effective for look-up because its attributes defining character-
istics to data can be compared to a key.

Figure 1(a) depicts a colormap supporting identification
and look-up. In this, every data point is represented by
some hue, which gives a identifying characteristic depending
on the data point’s value. For any data point, it is easy to
identify the other points with a similar value in the midst
of all the data points. Additionally, the look-up task can
be supported since it is simple to determine the value asso-
ciated with the point using the key. In contrast, Fig. 1(c),
which uses a colormap just for the comparison task, does
not support either identification or look-up to a significant
degree. Figure 1(b) uses a diverging colormap not only to
support comparisons of magnitudes but also to support iden-
tifying the sign of the value. Both Figs. 1(a) and 1(b) use hue
for identification, however, the identifiers the hue indicate
are significantly different.

Localization: This task is targeted to display the location
of all values within a proximity to a certain characteristic or
value. A query for this task would be “where are all the areas
with a value of 0.5?7” Note that this differs from look-up in
that look-up is more general for all the values displayed,
whereas localization only deals with a specific characteristic.
Since studies have shown humans have their visual attention
directed toward colors with higher intensity or saturation,®’
colormaps that support localization have the value or char-
acteristic of importance to be encoded by colors that are
particularly more colorful and/or bright. In Fig. 1(d), the
localization colormap is constructed such that only values
near 0.5 are colorful and are quickly located. A user attempt-
ing to locate this value using one of the other colormaps in
this figure would take significantly longer and be more prone
to error. In Fig. 2, an angle of polarization (AoP) measure-
ment of a daytime scene of the University of Arizona is
depicted using a colormap designed to highlight only values
close to the AoP of the sky. Thus, areas that are highlighted
in red are most likely reflecting the polarization signature of
the sky.

Combined tasks: Often, the visualization is desired to be
able to handle several tasks simultaneously. Mittelstddt
et al.*® provide colormaps for any combination of look-
up, comparison, and localization tasks for monotonic and
diverging data types. Generally, the more tasks required
of the colormap, the less optimal it will be for any individual
task, much like how the solution to an optimization problem
with many variables would not be optimal for any individual
variable.

2.4 AoP Colormap

While the 1-D colormaps for monotonic or diverging types
of data are plentiful, few colormaps are available that support
periodic data. When AoP data are mapped by a nonperiodic
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Fig. 2 AoP of one of the spectral channels taken on ground MSPI
at University of Arizona, courtesy of Christine Bradley and Russell
Chipman.®® ) = 660 nm. The chosen colormap is specific for a strict
localization task for AoP values that are close in value to the polari-
zation signature from the sky (90 deg). This allows users easily
identify regions in which the polarization is likely due to reflection from
the sky. Regions in black are below 5% DoLP.

map, the discontinuity at zero is marked by abrupt changes in
the pseudocolor image. These abrupt changes in appearance
do not correspond to any physical meaning in the data, since
the periodic data are recorded in a monotonic array with
arbitrary endpoints. Additionally, the perceptual difference
between points is exaggerated for angles, where the differ-
ence is greater than 90 deg. For example, given a perceptu-
ally linear colormap, the difference between angles of 15 deg
and 165 deg would have a perceptual difference correspond-
ing to 150 deg, even though they are only 30 deg away from
each other in an 180 deg period. Additionally, the difference
between 15 deg and 90 deg would only appear to have half of
the perceptual difference, even though the actual difference is
twice as much as between 15 deg and 165 deg.

Of the periodic maps that do exist, it is not common to
find one which takes into account the necessity to support
shape discrimination, which is an integral part of spatially
resolved AoP data. At high spatial frequencies, human
vision is more responsive to luminance changes than color
differences, meaning that shape information is more effi-
ciently encoded by luminance than color alone. Often,
periodic colormaps are created to be isoluminant with the
intention of uniformity in emphasis.>'** While isoluminant
periodic maps would be effective for situations where the
AoP data have low resolution spatial structure to it, such
as the polarization of the sky, it is not appropriate in the
situations with high resolution due to the lack of contrast.
This is illustrated in Fig. 3, where there are both isoluminant
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Fig. 3 AoP in radians of objects on a lab bench visualized with (a) HSV periodic colormap, (b) percep-
tually uniform isoluminant colormap, (c) perceptually uniform with varying lightness, (d) same as (c) but
with variability A mapped to transparency with a black background. Data are provided by Samuel Powell

and Justin Marshall, University of Queensland.

and luminance-varying periodic colormaps applied to high-
frequency AoP data. The most common periodic map is
created by cycling through the hues in HSV while saturation
and value are at maximum. While the value channel would
suggest it to be isoluminant, more accurate color models
would predict large variations in luminance.*’ Additionally,
the variations are not primarily a function of the hue differ-
ence. Thus, the contrast between any two colors in the color-
map does not indicate the difference between the values the
colors represent. This means that the impression of the
shapes of objects in the image may be defined primarily by
the contrast between arbitrary hues rather than by the most
significant angular variations. Figure 4 shows how the
perceived color difference between consecutive colors in
the HSV hues colormap varies depending on the value in
the colormap. This figure also depicts the lightness varying
nonuniformly across the colormap, with rapid changes at
some areas (particularly cyan to blue) and long stretches of
isoluminance (yellow to cyan).

A recent solution intended to introduce luminance varia-
tion while maintaining perceptual uniformity is to parame-
trize a circle in CAMO2-UCS space that is tilted in the
lightness axis.*” As can be seen in Fig. 3(c), the shape infor-
mation carried by the luminance is much greater than in
the isoluminant case. The color difference (AE) between
sequential steps in this colormap is constant. Additionally,
the color differences between any two angles are only func-
tions of the difference between them and not the individual
angles themselves as in HSV. Unlike the isoluminant color-
map, the lightness variation between sequential colors in this
colormap contributes to their total color difference, which is
just the Euclidean distance between the colors. Since the
lightness variation is not constant, the component of the
color difference from the chromatic channels is also not
constant. This means the hues are not varying linearly with
angle. While it is simple to instead restrict the colormap
to uniform hues with nonuniform color differences, it is
uncertain at the moment which one would perform better
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for the variety of visualization tasks if a significant difference
exists at all.

While this solution seems to work well in most situations,
introducing lightness variation into a univariate periodic col-
ormap creates some issues. Unlike monotonic or diverging
data structures which have inherent directions for increasing
or decreasing lightness, periodic colormaps cannot introduce
lightness variation without simultaneously introducing bias
because that breaks the rotational symmetry of the colormap.
This trade-off of rotational symmetry in favor of contrast is
generally beneficial, as evident in Fig. 3, but it is potentially
possible to avoid this trade-off altogether with methods
more sophisticated than predetermined one-to-one values-
to-colors mappings. To maintain rotational symmetry, the
achromatic channel would need to be decoupled from the
nominal AoP values. The achromatic channel could then be
available for providing contrast and shape discrimination
independent of the specific AoP-to-hue mapping. The light-
ness value of any pixel would be determined such that it
promotes the type of shape discrimination the user desires,
e.g., corresponding AoP gradients to shading gradients
or creating contrast between objects with differing AoP.
Currently, no such algorithm has been proposed.

One recurring issue with AoP colormapping is that it
has no zero point corresponding to a low amount of signal.
That is, the AoP derived from measurements with low signal
will be highly sensitive to noise, but without additional
processing, the noise will be displayed with the same
vibrancy as areas with a consistent signal. This is because
unlike other colormaps, periodic colormaps are usually
maxed out in terms of colorfulness. The attention drawn to
those colorful pixels that are carrying no useful information
reduce the amount of attention that could be turned toward
the pixels carrying more information. Often, areas below
a certain threshold degree of linear polarization (DoLP)
are eliminated by setting to black.'” This threshold, however,
may be difficult to set without multiple iterations and
does not necessarily conform to the uniformity in the AoP.
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Fig. 4 Color metrics for four different colormaps: jet, viridis, and HSV as defined in the Python package
matplotlib, as well as the isoluminant periodic colormap made in CAMO02-UCS, labeled as UCS.
(a) Colormaps shown as a set of 256 sequential colors. (b) Color difference between steps in the color-
map, measured using the CAM02-UCS color difference metric. This gives one measure of the rate of
perceptual change across the colormap. In this plot, the colormaps jet and HSV are very nonuniform
having an irregular color difference, while viridis and the UCS colormaps are uniform with a constant
color difference. (c) Lightness as a function of the colormap step. Both jet and viridis are meant for
monotonic data, however, only viridis exhibits monotonically increasing lightness. The lightness for the
isoluminant colormap UCS has a constant lightness. While isoluminance is not required for a periodic
colormap, the lightness profile of HSV does not have a consistent rate of change that would enable shape

discrimination evenly.

A solution that does not rely on the DoLP threshold is using
the local spatial statistics of the AoP. One option is the
variability metric A introduced by Tyo et al.:*!

A= /1= [Ey(cos w)? + Ex(sin y)?), ()

where Ey(x) is the expected value of argument x in the pixel
neighborhood N and y is the AoP. Although originally used
for the HSV color fusion method, it is immediately evident
that this metric would be useful when looking just at AoP.
One way to implement this is to use a threshold in the vari-
ability to determine whether pixels should be invalidated
before colormapping. Most visualization packages with a
colormapping function have an option to set the color for
invalid pixels. Most likely, this color would be black in
order to differentiate more easily from the other pixels.
Another option that would produce a smoother transition
between valid and invalid pixels would be to map the vari-
ability A to transparency, as shown in Fig. 3(d). In this figure,
all of the areas with ambiguous AoP are dark, allowing
the user to draw all their attention to just the areas with a
consistent AoP.

2.5 Degree of Linear Polarization Colormap

DoLP, as a monotonic value ranging between 0 and 1, is
most suited to be represented by a monotonic, continuous
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colormap. Generally, the tasks performed fall into the
comparison and look-up, that is “what is the value of the
DoLP here, and how does it compare to the DoLP over
there?” Most commonly, the DoLP image has high spatial
frequency content, which requires the colormap to include
achromatic variation. Given these tasks and the data struc-
ture, an appropriate choice would be what is called the spiral
colormap.’® These include matplotlib’s “viridis,” as shown in
Fig. 5(a)*’ and MATLAB’s “parula,”®® in which the color
array is ordered with a monotonically increasing achromatic
channel and spans roughly a half cycle in hue, so that each
end of the array is on either end of one of the color opponent
channels, usually the blue-yellow axis. Additionally, these
colormaps avoid the simultaneous presence of red and
green to be more colorblind friendly.”> Compare the spiral
colormap in Fig. 5(a) with the rainbow colormap in Fig. 5(b),
particularly the appearance of the gradient in DoLP across
the sky. With the spiral colormap, the achromatic channel
increasing across this range indicates a clear, intuitive pro-
gression in value from left to right. This is not true for the
rainbow colormap, where the gradient is primarily indicated
by a change in hue, which does not have the same intuitive
directional component of the achromatic channel. There is
also a significant difference in how the two colormaps
steer user attention, which can be judged on where in the
colormap the brightest, most vivid colors appear. For the spi-
ral colormap, these colors appear at the maximum, indicating
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Fig. 5 DoLP of a beach scene visualized with (a) spiral colormap “viridis” (matplotlib), (b) colormap
“‘jet” (matplotlib), and (c) asymmetric lightness-increasing diverging colormap, d)symmetric diverging
colormap. Data are provided by Samuel Powell and Justin Marshall, University of Queensland.

that observers will be visually steered to locations with the
highest value. In the rainbow colormap, the brightest color is
yellow, which appears in the upper middle range. This indi-
cates that observer attention will be steered not toward the
highest values, but to some value that likely does not carry
any special significance.

As previously mentioned, monotonic data structures can
utilize a diverging colormap in order to impose a simple
high-low dichotomy. This is extremely effective for resolv-
ing a search query, such as “is this value low or high?” and
“where are the areas of high/low DoLP?” The typical diverg-
ing colormap would involve a mirrored two-hue strategy,
where the color channels are symmetric around the critical
point, differing only in hue. Note that it is good practice to
avoid colors that may be indistinguishable for colorblind
observers (e.g., red-green) when possible. This symmetry is
useful for first identifying the range (low or high) and then
performing comparisons (higher, lower) within the identified
range. Figure 5(d) uses a symmetric diverging colormap on
DoLP data to clearly identify whether values should be con-
sidered low or high due to the fact that observers only need
to conduct a visual search for a single hue corresponding
to either extreme. The observer will automatically see the
image with a dichotomic paradigm (e.g., red versus blue),
which can be used as a tool for the visualization creator
to establish a low vs high categorization.

With a symmetric colormap, it is not easy to do compar-
isons across identifiers, i.e., “what is the relative difference
between this high value and this low value,” since the path
between the values is not represented by one of the ordered
color channels. Instead, the magnitudes from either extreme
or from the critical point can be compared across identifiers,
such as “is this high value closer to the extreme than this low
value?” Such tasks are most useful for symmetric variables
such as the polarized Stokes parameters Sy, S,, S3, or ellip-
ticity, since relative differences spanning the zero point are
less important than the magnitude difference. For monotonic
data, however, if the colormap is not symmetric in the
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achromatic channel, but instead increases monotonically,
the task of comparing values across identifiers becomes
easier. This is because, like in the case of spiral colormaps,
the ordering is accomplished through the achromatic
channel. An example of this type of colormap is given
in 5C, where both the low/high identification is present
while allowing for comparison through the lightness chan-
nel. For a localization task where dealing with searching
only for areas of high polarization, the diverging map
can be constructed in a way that has the low side be shades
of gray while the high side is colorful. With this method, the
visual attention is steered only toward the areas of high
polarization. This can be valuable if the background has
little polarization yet retains some shape information due to
the nature of edge-effects producing small fluctuations in
the DoLP.

2.6 Diverging Variables

Unlike DoLP and intensity, the polarimetric Stokes param-
eters S, S, S3, and ellipticity, have a diverging data struc-
ture centered around a critical value of zero. For the linear
Stokes parameters, the zero separates orthogonal polariza-
tion states. For the circular variables, the zero separates
left-handedness from right. As such, symmetric diverging
colormaps are the most appropriate for visualizing these var-
iables. If the data contain high spatial frequency information,
then the colormap additionally must implement some achro-
matic variation. All other types of colormaps will not support
the essential task of identifying the sign of the values, par-
ticularly those values closer to the critical value. Figure 6
depicts how the choice of colormap for the S; parameter
makes a large difference in being able to differentiate
between no signal and a small, consistent amount of signal.
The top row depicts S, data of a mantis shrimp as it was
originally taken by Sam Powell and Justin Marshall, using
both a diverging map and a grayscale map. The second row
shows this data with the background normalized S, value
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Fig. 6 Normalized Stokes parameter S; of a mantis shrimp visualized using (a and c) diverging color-
map, (b and d) grayscale. (a) and (b) Images are created from the data, and (c) and (d) data for creating
images have been altered by adding a value of 0.1 to areas with low S; signal. This is a demonstration of
how the diverging colormap clearly distinguishes between no signal (white) from little signal (light red),
whereas the grayscale colormap does not. Data are provided by Samuel Powell and Justin Marshall,

University of Queensland.

artificially increased by a constant value of 0.1. Using the
diverging colormap, the original data clearly have a white
background, indicating no significant value for S;. With
the artificially increased data, the diverging colormap has
a distinct light red background, which is consistent with
the change in the data. In contrast, neither grayscale images
have an indication whether or not the background images
have a significant S, component, and the difference between
them is hardly noticeable.

2.7 Discrete and Contour

For any of continuous colormaps used for the polarimetric
variables, there is a analogous discrete colormap that can
be obtained by sampling the colormap at regular intervals.
Generally, discrete colormaps are used to simplify the
visualization in order to efficiently show trends, patterns, and
symmetries. In polarization literature, discrete colormaps
have been used to display angular symmetries in the sky.***
In these cases, discrete colormaps act effectively as a more
visually stimulating alternative to contour lines, as evident in
Fig. 7. In this figure, the outlines of the discrete boundaries
serve to give a more easily identifiable form, which allow
the patterns of DoLP around the singularities to be more
apparent. In fact, contour lines have been used alongside
discrete maps in order to better outline the boundaries.*?
As contour lines become more complicated, using elements
such as color or texture can significantly improve the differ-
entiation of boundaries.** Some examples of the use of tex-
ture for defining boundaries in polarization literature exist,
such as using texture to form boundaries between polarized
and unpolarized regions,’ as well as a boundary between
measured and unmeasured areas.®’
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Fig. 7 Polarization of the sky simulated according to equations
defined by Berry et al.,** with Arago and Babinet singularities.
Discrete colormap for expressing contours.

3 RGB

While univariate colormaps are effective for visualizing a
single polarimetric variable, it is often the case that polari-
zation attributes that are spatially correlated be represented
by a single multivariate visualization. Given that colors are
most often encoded using the red, green, and blue primaries
of display monitors, it is reasonable to see why the RGB
color cube is often intuitively used as the space to map the
multidimensionality of polarimetric variables. These primar-
ies have been used to represent the Stokes parameters® or
multispectral DoLP.*® The main issue with this technique
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is that the RGB colorspace is not a color appearance model;
it does not represent how color is perceived.** Rather, the
RGB primaries are more representative of the voltages the
monitor needs to supply to the individual subpixels. Thus,
the way a computer represents a color is far different than
the perceptual color attributes we would ascribe to them.
For example, a color encoded as [1, 0.8, 0.5], when displayed
on a monitor would be perceived as a pale orange. The
descriptive words attributed to the color: “pale” for its satu-
ration and “orange” for its hue are used rather than labeling
the color as “fully red, with a good amount of green, and
some blue” as we would if we interpreted it similarly to
the monitor. In fact, the monitor’s ability to additively
mix a few colors to trick the human visual system into
perceiving a broad range of colors is precisely why monitors
are able to function. Therefore, representing variables with
the RGB primaries are likely to produce visualizations in
which the values are difficult to interpret. It is not enough
simply to match the dimensionality of RGB color cube to
the number of channels; the values must be encoded accord-
ing to the way color is interpreted in order to be effective at
communicating information.

Additionally, using the RGB channels as if they were
independently accessible and linear can create ineffective-
ness in the final result. Each primary is significantly different
in luminance, resulting in significantly different visibility
and contrast profiles for each channel. Blue, as the darkest
primary, will be much harder to distinguish from areas with
low signal, even if the signal representing blue is very strong.
Additionally, the choice of chromaticity of the RGB channels
is meant to maximize the amount of available colors instead of
representing equally spaced hues. Thus, the transition from
one primary to another is unsurprisingly not a uniform tran-
sition in hue. Since the hue of any RGB-encoded color is
determined by the two strongest primaries, having a nonuni-
form hue presents issues. As shown by Kruse et al.,* this non-
uniformity results in higher density of green hues compared to
any other nominal color. Thus, the viewer of a three-channel
RGB-encoded visualization may be more likely to overesti-
mate the magnitude of the channel represented by green.

Since hue is most suited for producing categorical distinc-
tions and saturation for comparing magnitudes, restructuring
the visualization to exploit this can result in more effective
visualizations. Consider the method of visualizing DoLP
taken at three wavelengths via RGB encoding. The presence
of color indicates that the polarization is wavelength-depen-
dent. The resulting hue is an indication of some categorical
information on the ratio of the stronger two signals. Note that
these categories are not evenly distributed: there are more
distinct hues between red and green than there are between
green and blue. Berlin*® posited that the categorical distinc-
tions for different hues are not arbitrary and are consistent
across cultures. This hypothesis has since been challenged,*’
yet if one accepts the set of red, green, blue, and yellow to
be sufficiently accepted as primary colors, there is still at
least one more categorical color between red and green
than between green and blue. This additionally would mean
that the wavelengths encoded in another permutation (red,
green, and blue assigned to ascending wavelengths) would
result in the areas being categorized completely different,
violating the visualization design principle of “representation
invariance.”*
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Instead of having the categorizations be implemented in
such an unintentional way, the visualization can be con-
structed such that the categorizations are made more explicit.
Using the convention of red, green, blue, yellow, orange, and
purple as categorical hues, the different possible states of
wavelength ratios can be differentiated by hue. Red, blue,
and yellow can represent states where one signal (DoLP;,
DoLP,, DoLP;) is stronger than the median. Green, orange,
and purple can indicate states where one signal is weaker
than the median. The second set of colors represent combi-
nations of the first (DoLP, and DoLP;, DoLP; and DoLP;,
DoLP; and DoLP,). By restricting the possible values the
hue can take, not only is the number of categories for
each state explicitly and evenly set, but also the ability to
extract the meaning from the hue is made dramatically easier.
If the deviations of one channel are meant to be highlighted,
the saturation can be encoded by the difference from the
median. Here are three likely visualizations for this scenario:
one to indicate where a channel is significantly greater than
the others, one to indicate where a channel is significantly
lower than the others, and one where both are indicated
(with the preference of overlapping categories going to
the more extreme case). Here, we will label these “strong,”
“weak,” and “combined,” respectively. The luminance chan-
nel can represent the average DoLP, since this channel carries
much of the shape information. Due to the fact that not
all three dimensions can be fully utilized independently to
the extent of any display gamut, the mapping methods for-
mulated within the uniform color fusion method [Eqs. (10a)—
(10d)] introduced by Kruse et al.* can be used to map this
method into the uniform color space CAMO2-UCS to pro-
duce a categorical color fusion:

J'= fJ’(DOLanean)»
Métrong = fM’ [S (DOLPmax - DOLPmed)] ’
M\fveak = fM/ [S(DOLPmed - DOLPmin)]’

M oy = Max(Miongs M yen )
0.185(red)  DoLP; = DoLP,,,
hgwong = § 1.723(yellow) DoLP, = DoLP,,, ,
—1.775(blue) DoLP; = DoLP,,,,
2.385(green)  DoLP; = DoLP,,
hyeak = ¢ 0.976(orange) DoLP, = DoLP,,,

—1.079(purple) DoLP; = DoLP,;,
hslrong Ms/lrong > M\:veak
heomb =

/ ; (2)
hweak M strong
where subscripts max, min, med, and mean are the maxi-
mum, minimum, median, and mean DoLP signal for that
pixel, with numerical subscripts referring to spectral channel.
Function f, is the mapping function for a color channel x
given in Egs. (10a)—(10d). J', M’, and h are the CAMO2-
UCS color channels of lightness, colorfulness, and hue,
respectively. The exponent in the lightness channel is
there for contrast enhancement. The values for the hues
given here are not of particular significance; they are just
here to help with converting color spaces. While this differ-
entiation is effective for three-channel scenarios, the “strong”
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Fig. 8 Three-channel spectral DoLP visualizations taken on ground MSPI at University of Arizona, cour-
tesy of Christine Bradley and Russell Chipman,®® 1,, 1,, A3 = 470, 660, 865 nm. (a)—(c) Categorical color
fusion method based on Eq. (2). Center colorbar indicates difference from the median for the (a) highest
DoLP, (b) lowest DoLP, and (c) combined. Hue indicates which wavelength is highest or lowest.
(d) DoLPy, DoLP,, DoLP3; as RGB primaries. (e) Diverging color fusion with colorbar for the standard
deviation of each pixel between the three wavelengths.

and “weak” cases could apply to more wavelengths, how-
ever, the number of distinct hues will max out at around
eight (the six already named plus cyan and pink). Thus,
the number of combined cases, where both strong and
weak signals are indicated, would be restricted to four
wavelengths (four hues for strong, four for weak). For the
individual cases of indicating strong or weak signal, this
visualization method may support up to eight wavelengths.
This number is determined by the list of 12 distinct colors for
labeling detailed by Ware** excluding black, white, gray,
and brown.

In Figs. 8(a)-8(c), the “strong,” “weak,” and “combined”
categorical color fusions are demonstrated. Here, the hue
unambiguously indicates that one of the wavelengths has
a significant difference to the others. The RGB-encoded
image in Fig. 8(d) displays many colors, however, it is dif-
ficult to determine exactly how the color attributes relate
to the DoLP for each wavelength. Compare the color of
the sky in this figure. In the RGB image, the blue color
would indicate that the DoLP;5 is the strongest. This agrees
with the “strong” image [Fig. 8(a)], which shows that this
wavelength has a moderately higher DoLP than the median.
In the “weak” image [Fig. 8(b)], the sky is indicated strongly
with green, indicating that there is a significant lack of
DoLP;. In the combined image, the sky is green because
the weakness of DoLP; is more extreme than the strength
of DoLP;. In the RGB image, the only way to assess the
strength of DoLP; is by determining the saturation of
the sky, which does not produce a categorical shift like
a change in hue. Therefore, the color of the sky is shown
as categorically strong in DoLP;, even though the more
defining attribute is its lack of DoLP;. While the definition
of “defining attribute” need not align with how it is used here
in all situations, it is used here to provide an example for
the process of aligning user-chosen categorizations to visual
categorizations.
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While those methods are quite effective in highlighting
areas in which the polarization is decorrelated between
the channels, it can also be useful to highlight areas in
which the polarization channels are correlated. If the satura-
tion is instead negatively proportional to the pixel standard
deviation, areas in which the channels are similar would be
colorful. This can be formulated as a single-hue color fusion:

M’ = fyr[(1—-0y)], ®)

so that as the standard deviation approaches zero, the color-
fulness approaches maximum. In this situation, it would be
useful to apply the mapping only to pixels meeting a mini-
mum DoLP threshold in order to desaturate unpolarized
areas. Additionally, both correlation and decorrelation can
be visualized using a diverging color fusion:

M’ = fu(|s —al/s). (42)
~J 0.185(red) 0,<s
h= { —1.775(blue) o, > s’ (4b)

where s is some chosen value corresponding that distin-
guishes correlated from uncorrelated standard deviation
values. Figure 8(e) uses the diverging color fusion method
to identify whether the DoLP of regions are wavelength-
dependent or not. The median standard deviation was around
0.05, which was used as the critical point.

4 Color Fusion

While mapping data into the RGB cube may initially be
the most intuitive way to map polarization into color, for
a long time researchers have understood that representing
the polarization parameters using a more perceptually
based color model leads to a more natural way to represent
polarization with color. Because the dimensions of linear
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polarization are remarkably similar to that of color vision,
the technique of directly relating the polarization channels
to their colorimetric counterpart is as old as polarization
imaging itself. While the technique is often attributed to
the work of Bernard and Wehner’ on physiological similar-
ities of systems for color vision and polarimetric vision,
it was actually Walraven® who introduced mapping the
polarimetric imaging channels into color channels for pro-
ducing images. This was introduced in a single paragraph
at the end of his seminal paper, formulated here as follows:

POL — saturation

v — hue,

I — grayscale,

POL = I(1 — DoLP), )

with arrows (instead of equals) indicating the function map-
ping to color was not well-defined. This method did not
precisely define saturation or hue in terms of a color space.
Due to the ambiguity of the terms “saturation” and “hue,”
it would be difficult to reproduce or analyze this method.
Following Walraven’s initial solution, the work of Solomon®
gave a more complete description of the mapping of polari-
zation to color. His method was based off of mapping DoLP
and AoP into the hue and saturation channels defined by a
color space that was introduced by Faugeras.’' Even though
the color channels were now well-defined, Solomon did not
account for the irregular shape of perceptual color spaces,
which requires some clipping of the gamut in order to evenly
map polarimetric channels into color coordinates.*’ The
calculations necessary to convert those color channel into
display coordinates were likely too computationally expen-
sive given the technology at that time. Coupled with the
relative obscurity of Faugeras’ color space, it is not surpris-
ing that this method was never replicated in any subsequent
publications. The first iteration of the well-known method
of mapping into the HSV color space was introduced by
Wolff and Mancini,’> mapping the parameters as follows:

1=V, (6a)
DoLP = S, (6b)
2w =H, (6c)

where the factor of 2 extends the 180 deg period of y into the
360 deg period of H. In a subsequent paper, Wolff et al.”
state that the color is rendered in HSI space, contradicting
their earlier use of HSV. While they likely were referring
to the same color space, the ambiguous use of word choice
can lead to drastically different implementations. Today,
the majority of implementations assume the HSV space,
however, some applications>* are based on the assumption
that Wolff et al.>* refer to other color spaces. This illustrates
how the process of mapping polarimetric channels into color
channels has historically been ambiguous, and the necessity
to be more precise when defining terms.

The main advantage of the methods that map to color
spaces is their ability to leverage the benefits of human
color vision to create an easily understandable yet spatially
correlated depiction of polarimetric phenomenon. The HSV
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space, unlike HSI or HSL, has peak chroma when S and V
are at maximum. The bright, colorful areas that draw the
most attention correspond to the strongest polarization and
are likely to be very important. In contrast, both HSL and
HSI spaces have the most vibrant colors toward the middle
range of lightness/intensity, meaning that the areas with high
intensity will not be colorful. Even though those areas are
drawing the most attention, they do not lose their contextual
physical attributes defined by the intensity of the area and its
surrounding. Bowers et al.> identify the usefulness of this
technique and apply it to thermal polarimetric imaging,
with value channel instead representing the thermal levels.

Tyo et al.’® introduced a simplified method using two
orthogonal hues for polarimetric difference imaging. While
this type of imaging does not even capture the full linear
polarimetric parameters, this work is often inaccurately cited
as source of the general HSV method. The motivation behind
this method is to reduce the attention-steering nature of noise
once it is colormapped without additional processing.

The latest amendment to the HSV method came from Tyo
etal.,*! due to the inability to see polarization in dark regions.
This is because the channel S has its perceptual magnitude
(measured in colorfulness or chroma), proportional to V.
That is, dark regions will always be not colorful, even
when they are fully saturated. Since regions with low irradi-
ance often have higher polarization,”’ this characteristic of
the HSV model can make significant portions of the polari-
zation information inaccessible to observers. The method
they proposed to prevent this was to have DoLP map into
V when the intensity is lower than DoLP:

H=2 y, (7a)
S = DoLP, (7b)
V = max(I, DoLP). (Tc)

While this method works well to eliminate the sources that
can cause some polarization to be missed, it inadvertently
increases the amount of false polarization. In order to
avoid this, Tyo et al.*' employed a method to determine
the appropriate mapping method at the pixel level based
on the variability A of the AoP, given above in Eq. (1).
When the variability is high, the standard mapping was
used for that pixel. When the variability is low, the amplified
mapping was used:

max(/,DoLP) A<t

Vf(A,t){ ; N (8)

An optimal threshold # may be dependent on several factors
that affect the statistics of the angular distribution like instru-
ment, spectrum, amount of illumination, etc. Additionally,
there must be some decision made to the level of acceptable
variability in the angular distribution to define what is
considered false polarization. In practice, the threshold was
applied to create a binary map indicating the mapping
method. This allows for morphological processes, such as
opening and closing to fill in gaps before mapping into color.

While this method greatly reduces the amount of false
polarization from dark regions, it does not affect the other
cases of false polarization. Kruse et al.*’ argue that simply
reducing the saturation in areas with high variability
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Fig.9 IHIP data,® 2 = 4.17 um. (a) and (b) [Egs. (9a) and (9)] Tyo et al.*' HSV color fusion method, max
degree of polarization (DoP) set to 0.4. (c) and (d) [Egs. (10a)—(10d)] Kruse et al.*® uniform color fusion
method, max DoP set to 0.4. (b) and (d) represent the data in (a) and (c) rotated by 20 deg. Note how,
when using the HSV method, the AoP gradient over the hood of the truck in (a) is not maintained after
rotation in (b), where the sharp color difference between cyan and blue (evident in Fig. 4) perceptually
split the hood into two sections. This is not the case in (c) and (d), which use CAM02-UCS due to its
perceptual uniformity.

accounts for eliminating much more of the sources of false
polarization. This instead uses an assumption that areas with
high angular variability should not be displayed as real
sources of polarization.

To implement this, the DoLP can be multiplied by
the previously defined binary map so that all areas above
the variability threshold are reduced to zero. The mapping
functions would then be as follows:

S =D -DoLP, (9a)
V =max(/, S), (9b)

where D is the binary threshold map. Due to the amplifica-
tion of dark regions on a single pixel basis, these techniques
can create excessive pixelated contrast. To the viewer,
this can be jarring, distracting, unaesthetic, and can convey
a diminished sense of quality. To reduce this, the binary map
D can be smoothed prior to using Egs. (9a) and (9b), for
example, by using a Gaussian filter.

While the cylindrical coordinate system of HSV is useful
as an approximation of human color vision for color-picking,
there are many issues caused by using it as the model for
visualization.” The main two issues of HSV are nonuniform-
ity and channel mixing.* Nonuniformity describes how per-
ceptual channels get distorted, meaning that differences in
the polarization values are not proportional to the perceptual
differences. Channel mixing describes how the individual
channels of HSV map to multiple perceptual channels simul-
taneously, meaning that extracted polarization information

technique, these aspects are made visible comparing identi-
cal data where in one set, the AoP is rotated by some angle.
In Fig. 9, the rotation between left and right columns creates
a significantly different appearance on the hood of the truck.
In Fig. 9(a), the hue indicates a smooth gradient across the
hood, whereas in Fig. 9(b), the hue and lightness change so
rapidly that the hood appears to be two distinct sections.
In comparison, the color fusion designed to be uniform
and without channel-mixing shows no such phenomenon in
Figs. 9(c) and 9(d).

The method Solomon introduced would not have had
these issues because it was based on a uniform color
space. Combining ideas from Solomon and Tyo et al., and
with a more contemporary color space, Kruse et al.*’ intro-
duced mapping methods to map the channels of AoP, DoLP,
and intensity into the color channels of hue 4, colorfulness
M’, and lightness J’, defined in the uniform color space
CAMO2-UCS. The move from using saturation to colorful-
ness is supported by two main arguments. First, saturation
does not have a uniform correlation in CAMO2-UCS.
There is a nonuniform correlation in the nonuniform color
model CAMO2, however, the uniform transformation does
not have a defined term for saturation. More importantly,
the ability to perform comparison tasks using a saturation
channel is highly dependent on lightness. In contrast, the
comparison task would likely not be affected by changes in
lightness, due to the fact that the magnitude of color differ-
ence along the colorfulness axis would not change at differ-
ent lightness levels. The mapping equations are as follows:

from a perceptual channel is dependent on the other polari- h=fily) =2y, (10a)
metric variables. Both of these aspects are apparent in Fig. 4,

with the nonuniformity evident from the highly varying M' = fy(DoLP) = max(c) - DoLP, (10b)
color difference, and the channel-mixing with the varying , , , ,

lightness since value V is held constant. In the color fusion J'=fpI)=1-(]-Jy)+Js (10c)
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Fig. 10 IHIP data,%® 4 = 4.17 um [Eq. (11)]. Diverging color fusion
method, max DoP set to 0.3.

T I ={1"c(J) =M}, (10d)

which describe the technique of placing polarization chan-
nels into more accurate color channels. The curve ¢ repre-
sents the maximum M’ for any J' that allows any hue with
that colorfulness and lightness to map into a given RGB
color space. Therefore, ¢ is the boundary curve that when
rotated along the J' axis defines the subset of the display
gamut which is rotationally symmetric. This rotational sym-
metry allows for two of the parameters to be independent
or unmixed. Due to the limitations of human color vision,
at least one of the channels J’ or M’ must be dependent
on the other in order to have a reasonably large range in
both. For this reason, I is linearly mapped to the J’ range
that can be achieved with the current M’. An analogous
visualization for circular polarization can be constructed
using diverging color fusion®® by having the hue indicate
the handedness:

S3>0

| 0.185(red)
h= { 5 20" (11)

—1.775(blue)

An example of this is shown in Fig. 10.

Because AoP often describes categorical information
about an object, e.g., its physical orientation or whether it
is reflecting a polarized light source, it is very convenient
that hue is both categorical and periodic. DoLP, on the
other hand, is generally not as definitively categorical on
the level of small deviations. That is, it is often the case
where the particular value of an object’s AoP is more
descriptive of the source of the polarizing effect than how
much it is polarized. It would be more likely that two
areas with the same AoP have a shared source even if
they differ in DoLP. Thus, having the visualization primed
for assisting in identification tasks for AoP and comparison
tasks for DoLP is often the most effective combination. Still,
there are an infinite number of tasks and task combinations
using this framework that could be implemented to construct
different visualizations.”® In addition to the traditional color
fusion, the other types discussed here include diverging,
categorical, and single-hue. It is important to keep in mind
the importance of supplying some sort of key when using
these types of color fusion techniques. Without some sort
of indication of how the viewer is meant to interpret the
color values, the visualization mainly functions as a source
of aesthetics.
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5 Markers

Often, the color and intensity of the image are desired to be
displayed as they are, rendering colormapping strategies
useless. As such, since the original image is meant to be
unaltered, there is a popular collection of methods for super-
imposed markers that depict polarization states at their
spatial positions. The markers can be lines,** ellipses,*°’
moving dots,” or arbitrary symbols.” The markers can
represent polarization states at specific spatial intervals,*
or placed in a randomized fashion,*® or depict the average
states of local pixel neighborhoods.*

For linear markers, encoding the DoLP into the length of
the line or arrow may result in biases in the tasks. A psycho-
physical study by Craven®” exhibited consistently that lines
that are oriented more vertically are estimated to appear
longer than lines oriented horizontally. Additional evidence
for this phenomena is demonstrated more recently by Zhu
and Ma.%® In order to reduce the impact of this bias, it
would be beneficial to also encode DoLP into additional
channels, such as color, using the colormapping methods
discussed above. Using multiple channels to encode a single
variable may seem excessive, but the use of redundant visual
cues is well established in the visualization literature.®

The debate over the optimal placing of indicator lines for
vector field visualizations is still ongoing. Ware,** using the
Field et al.% theory of contour perception, argues that placing
vector lines in a grid-like fashion creates false contours
and does not strongly stimulate the neurons responsible
for detecting the actual contours. Instead, he argues that
end-to-end lines, where the end of each line points toward
the end of another line, are the most effective for establishing
a perceived contour. However, this method inherently adds
complexity to the visualization algorithm by requiring a
method to position them in such an alignment. A middle-
path approach is the “jittered” or randomized line segment
location. Without the grid pattern, the false contours are
less likely to be perceived, and end-to-end positioning is
more likely to occur. Given that measurements are virtually
always taken on a grid, randomization can be implemented
by allowing the position of each line segment to vary within
the local area of the grid. Such a technique is exemplified
perfectly by Berry® in a visual comparison of revisualizing
the measured AoP of the daylight sky with randomly shifted
line segments that was originally published using a strict
grid. The contours for the randomized lines are much
more apparent than for the lines on a grid, as apparent in
Fig. 11. Note that the decision between grid and jittered
is not important if contour or trend detection are not impor-
tant tasks.

On the other hand, one user study for vector flow visu-
alizations carried out by Laidlaw et al.°® did not find much
statistically significant difference between the flow visualiza-
tions using a grid versus randomized. However, the tasks
involved were not representative of polarization vision appli-
cations. Additionally, the types of flow visualizations were
not similar to the vector visualizations used in polarization
imaging. Given that this is the only user study that is some-
what related, it should not be dismissed entirely.

The method for determining the type and orientation of
the marker based on a local pixel average is most evidently
useful in situations where spatial features are significantly
larger than the individual data points and those individual
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Fig. 11 Polarization of the sky simulated according to equations defined by Berry et a

X Arago
+ Babinet

1

0.0

I.,%2 with Arago and

Babinet singularities. Vector maps for AoP using (a) a grid, (b) a randomized pattern, (c) with DoLP
encoded into length, and (d) with DoLP encoded into length and color.

data points have significant variance, such that a randomly
selected data point is not adequately representative of its
neighbors. This rules out simulated data®' as well as sparse
data.®®%” The averaging method has been used effectively for
biological polarization imaging due to high amount of
noise.”*

6 Miscellaneous Methods

While the most commonly used visualizations have been
covered, there are a handful of visualizations introduced
by Yemelyanov et al.’ that have not been practically imple-
mented outside of the initial publication. The first method
involves the visual system’s ability to cluster objects based
on coherent motion.*® While this is not a widely used visu-
alization technique, there is considerable psychophysical
evidence® that this is a underused channel for data
visualization.** The method overlays randomly seeded dots,
where the motion of each dot is either set to random or coher-
ent based on a threshold in the polarization difference image.
The orientation is set to either horizontal or vertical based on
whether the polarization difference is positive or negative.
While the horizontal/vertical alignments are artifacts of
polarimetric difference imaging, it is easy to see how the
movement can be altered to be extendable to linear, circular,
and elliptical polarization, using the polarization ellipse as
the movement pattern. The ability to separate random move-
ment from coherent movement may be underutilized in
imposing a binary movement pattern of either fully random
or fully coherent. It may be underestimating the visual sys-
tem’s ability to detect smaller differences in motion, but the
extent to which it is underestimated may only be determined
by conducting user studies. Instead of the binary movement
patterns, the coherence of the movement pattern can be pro-
portional to the degree of polarization. Perhaps the greatest
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benefit that is unique to this method is the ability to preserve
the unpolarized image, like other types of markers, while
depicting a spatially resolved polarization information,
like methods using color. Size, frequency, transparency,
and amplitude, among others, are some parameters of the
moving dots that have not yet been explored.

Yemelyanov et al.” introduced two methods for tempo-
rally modulating the unpolarized and polarized images. In
one method, the visualization transforms from the unpolar-
ized image to the color fusion image and back over a set
period of frames. In the second, the intensity of polarized
regions modulated, where positive and negative polarization
differences are set a half cycle apart. Like the moving
dots, this type of method has not undergone user studies
that might indicate its effectiveness. These methods, while
largely unknown, have significant potential and warrant fur-
ther investigation.

7 Conclusion

Figure 12 illustrates some of the decisions that must be made
in order to choose an appropriate visualization method. This
includes whether or not the data is multivariate or univariate,
what the data type is, and what tasks are being chosen. While
this diagram is not exhaustive, performing the exercise of
going through each decision is a good way to get in the mind-
set of visualization design. The diagram is meant to be only a
simple approximation to the questions one should ask when
deciding on a particular visualization. This is not meant to be
a set of rules to follow but rather a method for producing an
effective visualization that suits the needs of the person using
it. In fact, the future for polarization visualization is much
more open-ended, with a seemingly limitless number of
avenues in which to design.
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