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Abstract. We propose an integral three-dimensional (3D) display system with a wide viewing
zone and depth range using a time-division display and eye-tracking technology. In the proposed
system, the optical viewing zone (OVZ) is narrowed to a size that only covers an eye to increase
the light ray density using a lens array with a long focal length. In addition, a system with low
crosstalk with respect to the viewer’s movement is constructed by forming a combined OVZ
(COVZ) that covers both eyes through a time-division display. Further, an eye-tracking direc-
tional backlight is used to dynamically control the COVZ and realize a wide system viewing
zone (SVZ). The luminance unevenness is reduced by partially overlapping two OVZs. The
combination of OVZs formed a COVZ with an angle that is ∼1.6 times larger than that of the
OVZ, and an SVZ of 81.4 deg and 47.6 deg for the horizontal and vertical directions, respec-
tively, was achieved using the eye-tracking technology. The comparison results of the three types
of display systems (i.e., the conventional system, our previously developed system, and our
currently proposed system) confirmed that the depth range of the 3D images in the proposed
system is wider than that of the other systems. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in
part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.61.1
.013103]
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1 Introduction

The integral three-dimensional (3D) display is a 3D imaging system based on integral photog-
raphy proposed by Lippmann.1 This promising 3D display technique can potentially be applied
to various fields and has been actively researched because it does not require special glasses to
view the natural full-parallax images.2–11 However, the viewing zone, spatial resolution, and
depth range of the reconstructed 3D images are limited because the integral 3D display recon-
structs a large amount of light ray information.12,13 Therefore, a system design that efficiently
increases the light ray density is necessary for displaying 3D images with a wide viewing zone,
high spatial resolution, and wide depth range.

To date, various design methods for the viewing zones of the integral 3D display system have
been reported. As shown in Fig. 1, they are classified into three types: optical viewing zone
(OVZ), combined OVZ (COVZ), and system viewing zone (SVZ). OVZ is determined by the
design of the elemental image array (EIA) and lens array, as shown in Fig. 1(a). Generally, the
OVZ angle θovz is expressed as
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EQ-TARGET;temp:intralink-;e001;116;561θovz ¼ 2 arctan

�
e
2f

�
; (1)

where e is the size of the elemental image and f is the focal length of the lens array. Moreover,
there is a trade-off between the OVZ angle and light ray density. The light ray density increases
when the OVZ is narrowed, resulting in a wide depth range. Furthermore, a side lobe OVZ, in
addition to the main lobe OVZ passing through the corresponding lens, is formed by passing
through the adjacent lens when the EIA is displayed with diffused light. In contrast, the COVZ is
formed by combining multiple OVZs using directional light from different directions, as shown
in Fig. 1(b). COVZ is formed because the side lobe OVZ is removed by forming an OVZ using a
directional light. Finally, the SVZ is formed by generating the EIA in real-time and dynamically
controlling the OVZ, as shown in Fig. 1(c). This is achieved by deriving the eye position of the
viewer using the eye-tracking technology, which generates the EIA for each frame and forms an
OVZ based on the eye position of the viewer.

Thus, the viewing zone and light ray density can be enhanced by optically and systematically
designing the formation of the viewing zone. Therefore, we propose a method that forms both
COVZ and SVZ using the time-division display and eye-tracking technology and realizes a wide
viewing zone and depth range. Furthermore, we construct a prototype system for displaying the
integral 3D images with a wide viewing zone and depth range by applying the novel design of the
viewing zone and evaluate its characteristics.

2 Related Work

2.1 3D Display System that Forms COVZ

Previous studies have reported a method using multiple projectors as a 3D display system to
form a COVZ.14–16 A collimating lens was placed in front of the projector to provide directivity
to the projected light, and the light passes through the lens array to form an OVZ without side
lobes. An OVZ without side lobes was formed based on the projection angle by projecting from
another angle using another projector. Then, a COVZ is formed by combining multiple OVZs,
expanding the viewing zone.

A method of forming a COVZ via a time-division display using a transmissive liquid-crystal
display (LCD) and a directional backlight was proposed. Yang et al. constructed a directional
backlight using a light-emitting diode (LED) array and formed a COVZ with a time-division
display.17 Further, Liu et al. formed 40 deg OVZs in three directions using multidirectional back-
light units and displayed a 3D image with a wide viewing zone of 120 deg in the horizontal
direction using a lenticular lens.18

Because the aforementioned methods use projectors or LED arrays, the COVZ is static. In
addition, they are primarily aimed at expanding the viewing zone by forming the COVZ and do
not consider narrowing the OVZ to increase the light ray density.

Fig. 1 Classification of viewing zones in the integral 3D display systems: (a) OVZ, (b) COVZ, and
(c) SVZ.

Okaichi et al.: Integral three-dimensional display system with wide viewing. . .

Optical Engineering 013103-2 January 2022 • Vol. 61(1)



2.2 3D Display System that Forms SVZ

We previously proposed a method to achieve a wide viewing zone by generating EIA in real-time
based on the eye position of the viewer, dynamically controlling the OVZ, and forming an
SVZ.19 Furthermore, the light ray density was increased by narrowing the OVZ to a single viewer
using a lens array with a long focal length, which expanded the depth range. In addition, unlike
the binocular system, the integral 3D system with eye-tracking forms an OVZ, resulting in the
suppression of the effect of system latency and reduction of the crosstalk caused by the viewer’s
movement using the outer margins of both eyes. Therefore, we constructed a system using a lens
design that can widen the OVZ horizontally and showed that an OVZ margin of ∼101 mm or
more is robust to the viewer’s movement. In the previous design, when the light ray density
needs to be increased to expand the depth range, a lens array with a longer focal length should
be used, but the OVZ can only cover one eye.

To solve the aforementioned problem, in this paper, we propose a method that further
expands the depth range by forming both the COVZ and SVZ using time-division display and
eye-tracking technology while maintaining the previous wide viewing zone and robustness based
on the viewer’s movement.

3 Proposed Method

The light ray density is low when using the conventional integral 3D display, which consists only
of the lens array and display, because a wide OVZ is formed to ensure that multiple viewers could
see simultaneously, as shown in Fig. 2(a). Therefore, in the previously developed design,19 the
viewer was limited to a single viewer, the focal length of the lens array was lengthened to
increase the light ray density, and the eye-tracking technology was used to dynamically move
the OVZ. A wide SVZ was realized based on the result, as shown in Fig. 2(b). In addition, by
designing a lens array arrangement that forms a horizontally widened OVZ, it is possible to have
a margin in the OVZ around both eyes and reduce the occurrence of crosstalk due to system
latency when a viewer moves. However, the OVZ cannot be narrowed further because it is nec-
essary to form an OVZ that covers both eyes. Therefore, in this study, we propose a method that
can further narrow the OVZ and increase the light ray density.

In the proposed method, an OVZ covering an eye is formed, as shown in Fig. 2(c). Then, the
OVZ for the left and right eyes is alternately switched to form a COVZ with a size covering both
eyes using the directional backlight and time-division display. As a result, a COVZ of the same
size as the previous design is formed, which makes the system robust with low crosstalk with
respect to the viewer’s movement.

It is necessary to remove the OVZ of the side lobe to form a COVZ using time-division
display. Therefore, we built a directional backlight composed of a point light source and con-
vex lens. In addition, the direction of the light must be dynamically changed based on the eye
position. Therefore, the point light source image is displayed using a display panel, and the
direction of the light ray is dynamically changed by changing the position of the point light
source based on the eye position. It is possible to realize a display with a higher light ray
density using the proposed design than the previous design that formed an OVZ that includes
both eyes. Moreover, it is possible to realize a display with low crosstalk with respect to the
movement of the viewer because a COVZ of the same size as the previous design can be
formed. Furthermore, a wide SVZ is realized because the COVZ can be dynamically moved.
Table 1 shows the comparison among the technical features of the conventional, previous, and
proposed designs.

In the eye-tracking device, using the horizontal and vertical eye detectable angles, θtrack;h and
θtrack;v, respectively, the horizontal and vertical SVZ angles, θsvz;h and θsvz;v, respectively, are
expressed using the following equations:

EQ-TARGET;temp:intralink-;e002;116;116θsvz;h ≈ θtrack;h þ θcovz;h − θipd; (2)

EQ-TARGET;temp:intralink-;e003;116;65θsvz;v ≈ θtrack;v þ θcovz;v; (3)
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where θcovz;h and θcovz;v are the horizontal and vertical COVZ angles, respectively.
The angle θipd formed by the interpupillary distance dipd and viewing distance L is given by

EQ-TARGET;temp:intralink-;e004;116;101θipd ¼ 2 arctan

�
dipd
2 L

�
: (4)

Table 1 Comparison of the technical features of the conventional, previous, and proposed
designs.

Conventional design Previous design19 Proposed design

Time-division display No No Yes

Eye-tracking technology No Yes Yes

Light ray density Low Middle High

Fig. 2 Comparison of the system configuration and OVZ (COVZ) at the viewing position using the
(a) conventional, (b) previous,19 and (c) proposed designs.
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4 Construction of the Prototype System

4.1 System Configuration

Figure 3 shows the configuration of the system for generating the point light source image and
the EIA based on the eye position. The time-division display for each eye is performed alter-
nately. The prototype of the proposed system was constructed using an eye-tracking directional
backlight, an LCD for the EIA display, a lens array, a camera for eye tracking, and a PC for image
generation (Figs. 3 and 4). The eye-tracking directional backlight was produced using a convex
Fresnel lens with a focal length of 200 mm and an LCD for displaying the point light source
image. The refresh rate of both of the LCDs for the point light source and EIA was 60 Hz, and
they were synchronized by outputting the images using the same graphic board. A camera
(Logicool C922) was used for estimating the eye position, and Dlib,20 which is a library con-
taining machine learning algorithms, was employed for estimating the 3D position of the eye
position. The camera operates at 60 frames per second (fps) and has a 640 × 360 resolution and a
78 deg lens angle of view. The estimation error of the eye position was suppressed below 10 mm
in all directions. A high-pixel-density LCD manufactured by Sharp with a pixel density of
537 pixels per inch (ppi) and a resolution of 2560 × 1440 was used to display the EIA.

4.2 Lens Array Design

The lens array corresponding to each system was designed and created to compare the display
performance of the system in the conventional, previous, and proposed designs described in

Fig. 3 System configuration for time-division display based on eye position: (a) left eye and
(b) right eye.

Fig. 4 Prototype of the proposed design.
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Sec. 3. Table 2 shows the specifications of the lens design. Lens arrays with a lens pitch of
0.5 mm were used for all designs. The focal length was designed to increase in the order of
1.0, 2.0, and 3.0 mm. In proportion to the focal length, the light density was two or three times
higher than that of the conventional design in both the horizontal and vertical directions, and the
depth range was widened. Further, to reduce the crosstalk caused by the viewer’s movement, a
square-structure lens array was rotated by 45 deg in the proposed design to form a horizontally
widened OVZ. The aspect ratio of the OVZ is set to 2:1 (H:V) by arranging the lens array and
generating the corresponding EIA, as shown in Fig. 5.19,21 A sufficient margin of the OVZ can be
achieved, similar to the previous design, by forming the COVZ using time-division display to
ensure the construction of a system that is robust to the viewer’s movement. In Sec. 5.3, the
results of the evaluation of the difference in the depth range by applying the corresponding lens
arrays to the three types of display systems shown in Fig. 2 are presented.

4.3 Real-Time Rendering of the Point Light Source Image and EIA

A point light source image for a directional backlight and an EIAwere generated after analyzing
the camera image and estimating the eye position. Figure 6 shows the rendering pipeline of the
point light source image and EIA. Real-time rendering was performed using a PC with an Intel
Core i9-10980XE, 3.00 GHz CPU, 128 GB memory, and NVIDIA GeForce RTX 2080 Ti GPU.
A point light source image is rendered using a fragment shader by calculating the position where
the point light source of a white image is displayed from the parameters of the eye position.
Meanwhile, EIA is rendered using a method to generate an EIA at high speed by parallel process-
ing with the GPU.22–24 The multiviewpoint images of a 3D model generated by a virtual camera
array are stored in a texture array, and the EIA is generated in real time by performing pixel
mapping using a fragment shader. Rendering was performed at 60 fps in synchronization with
the refresh rate of the display using a virtual camera array of 14 horizontal cameras and 7 vertical
cameras. The displays for the point light source image and EIA were synchronized using the
same graphics board (NVIDIA GeForce RTX 2080 Ti). Both images were rendered using the
same program in the Unity game engine with the output at 60 fps. The aforementioned rendering
process was performed in every frame such that the OVZs were alternatively formed for the left
and right eyes.

Table 2 Specifications of the lens arrays.

Conventional design Previous design19 Proposed design

Lens pitch 0.5 mm 0.5 mm 0.5 mm

Focal length 1.0 mm 2.0 mm 3.0 mm

Arrangement Square (0 deg rotation) Honeycomb (30 deg rotation) Square (45 deg rotation)

OVZ (H × V) 28.1 deg×28.1 deg 24.4 deg×7.2 deg 13.4 deg×6.7 deg

Fig. 5 (a) Lens array arrangement of the proposed design. (b) Magnified image of the correspond-
ing EIA.
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5 Evaluation Experiments and Results

5.1 Reduction of Luminance Unevenness

The luminance unevenness was observed for each OVZ of the prototype system. The luminance
unevenness was caused by a combination of factors, including the diffusion of light in the LCD,
aberration of the lens, size of the point light source, and optical system placement error. The
highest luminance was found in the central part, and it gradually decreased toward the periphery.
Therefore, the luminance was measured using a luminance meter (TOPCON BM-7) at 1 deg
intervals while tracking the center of the display by moving it horizontally at a viewing distance
of 700 mm, as shown in Fig. 7. The luminance was measured by switching the point light source
for the directional backlight between ON for only the left eye, ON for only the right eye, and ON
for both. A white image was input to the LCD for the EIA.

Figure 8(a) shows the luminance profile when the position of the point light source was set to
completely separate the OVZs for the left and right eyes. The horizontal and vertical axes re-
present the viewing angle and luminance, respectively. The luminance drops in the central part of
the COVZ, and the luminance unevenness is large when completely separated. Therefore, the
light for the left eye and right eye is partially overlapped in the central part to reduce the lumi-
nance unevenness. The two OVZs were combined to overlap at approximately half of the peak
luminance of each OVZ. Figure 8(b) shows the measurement results when partially overlapped.
The luminance is smoothed and the luminance unevenness is reduced in the COVZ by partially
overlapping the light for the left and right eyes. The reduction index value Ir of the luminance
unevenness is expressed as

EQ-TARGET;temp:intralink-;e005;116;134Ir ¼
Lb;max − Lb;min

La;max − La;min

; (5)

where La;max and La;min are the maximum and minimum luminance in the COVZ when sep-
arated completely, respectively, and Lb;max and Lb;min are the maximum and minimum

Fig. 6 Rendering pipeline for the point light source image and EIA.
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luminance in the COVZ when partially overlapped, respectively. Therefore, it was confirmed
that the luminance unevenness was reduced to 48%. In particular, the center part of the
COVZ becomes brighter by suppressing the luminance unevenness using this method.
This allows the viewer to view 3D images naturally without darkening even when the viewer
moves. When completely separated, as the luminance value becomes zero at the center of the
COVZ, as shown in Fig. 8(a), the contrast ratio cannot be obtained in the performance of the
display. In two-dimensional flat panel displays, a certain level of contrast is obtained within
the range of the viewing angle; therefore, we consider that obtaining a certain level of con-
trast within the range of the COVZ is desirable for the performance of 3D displays. When
partially overlapped, as shown in Fig. 8(b), as a certain level of contrast can be obtained in
the entire COVZ, the configuration is suitable for a 3D display. As a future study, the effect
of the light diffusion must be reduced, and the luminance unevenness should be further
suppressed.

Fig. 8 Luminance profiles when (a) OVZs are completely separated and (b) OVZs are partially
overlapped.

Fig. 7 Setup for the luminance measurement.
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5.2 Viewing Zones

First, we conducted an evaluation experiment on the OVZ and COVZ of the proposed system. In
the experiment, the aspect ratio of the OVZ was made horizontally long by 2:1 by rotating the
lens array of a square structure by 45 deg.19 In the proposed method, the OVZs for the left and
right eyes were combined using a time-division display. As discussed in Sec. 5.1, the OVZs were
partially overlapped and combined to reduce the luminance unevenness of the connecting part.
Figure 9 shows the difference in 3D images, which depends on the presence or absence of time-
division display at both ends of the OVZ (COVZ), when viewed in the center of the display. The
horizontal OVZ without time-division display is 13.4 deg [Fig. 9(a)], and the COVZ with time-
division display is 21.4 deg [Fig. 9(b)]. The OVZ expansion of ∼1.6 times was achieved. As a
result, a margin of ∼101 mm in the COVZ was realized on the outside of both eyes, and a system
with low crosstalk with respect to the movement of the viewer was constructed when the viewer
moved at a speed of 340 mm∕s or less.19

Subsequently, an evaluation experiment was conducted on the SVZ by applying an eye-
tracking technology in addition to a time-division display. Figure 10 shows an integral 3D image
viewed from different viewpoints. An SVZ angle of 81.4 deg in the horizontal direction and
47.6 deg in the vertical direction was achieved. The integral 3D images could be continuously
observed within the range in which the viewer’s eye could be detected by the camera.

In the experiment, we used a camera with a lens angle of view of 78 deg for eye tracking.
SVZ can be further expanded by widening the angle of view of the camera. However, if a camera
with a wide-angle lens is used, the periphery of the image is likely to be distorted significantly,
which would necessitate the need for eliminating the effect of lens distortion to accurately esti-
mate the eye position.

5.3 Spatial Frequency Characteristics

We evaluated the spatial frequency characteristics of the integral 3D image experimentally using
the three types of lens arrays shown in Table 2 that were applied to the three types of display
systems (i.e., conventional, previous, and proposed designs) shown in Fig. 2. The LCD for the
EIA described in Sec. 4.1 was used in all systems.

First, we performed a simulation of the spatial frequency characteristics for each design. In an
integral 3D display, the upper-limit spatial frequency γ is expressed using the viewing spatial
frequency β and Nyquist frequency βn

12

Fig. 9 Reconstructed integral 3D images at both ends of (a) OVZ when time-division display is not
performed and (b) COVZ when time-division display is performed.
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EQ-TARGET;temp:intralink-;e006;116;374β ¼ f
2p

ðL − zÞ
jzj ; (6)

EQ-TARGET;temp:intralink-;e007;116;328βn ¼
L
2Pl

; (7)

EQ-TARGET;temp:intralink-;e008;116;294γ ¼ min½β; βn�; (8)

where L is the viewing distance, z is the distance from the lens array to the display position of the
3D image (the front is positive), f is the focal length of the lens array, p is the pixel pitch, and Pl

is the lens pitch. Figure 11 shows the simulation results of the spatial frequency characteristics of
the integral 3D image for each design. In the figure, the horizontal axis represents the distance of
the reconstructed image from the lens array, and the vertical axis represents the upper-limit spa-
tial frequency in the horizontal direction. As shown in Table 2, the lens pitches are the same for
all lens designs. However, the Nyquist frequencies, βn, differ owing to different lens arrange-
ments: square (0 deg rotation), honeycomb (30 deg rotation), and square (45 deg rotation). For all
designs, the viewing distance was set to 700 mm. The light ray density increased proportionally
by increasing the focal lengths of the conventional, previous, and proposed lens arrays to 1.0,
2.0, and 3.0 mm. To compare the depth ranges at the same spatial frequency for the three types of
designs, we compared them at 12.2 cycles per degree (cpd), which is the Nyquist frequency of
the conventional design—the lowest Nyquist frequency among the three designs. As a result, the
depth ranges of the 3D image were improved to 21.2, 42.4, and 63.6 mm at a spatial frequency of
12.2 cpd.

The reconstructed images of the resolution chart at positions of −60, −30, 0, 30, and 60 mm
(the front is positive) from the lens array are shown in Fig. 12 to evaluate the depth range of the
3D image. They were taken from the center position. A time-division display was performed in

Fig. 10 Reconstructed integral 3D images viewed from different viewpoints in the horizontal
(Video 1) and vertical (Video 2) directions when SVZ is formed using the eye-tracking technology
(Video 1, MP4, 4.8 MB [https://doi.org/10.1117/1.OE.61.1.013103.1]; Video 2, MP4, 4.5 MB
[https://doi.org/10.1117/1.OE.61.1.013103.2]).
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Fig. 12 Reconstructed integral 3D images of the resolution chart at different depths in the conven-
tional, previous, and proposed designs.

Fig. 11 Upper-limit spatial frequency characteristics of the conventional, previous, and proposed
designs.
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the proposed design unlike in the conventional and previous designs. The lower part of Fig. 12
shows the magnified images of the reconstructed images when displayed at 60 mm from the lens
array. Aliasing occurs at a spatial frequency of ∼2.0 cpd in the conventional design, ∼3.9 cpd in
the previous design, and ∼5.9 cpd in the proposed design. These results are congruent with the
simulation graph shown in Fig. 11, confirming that the spatial frequency characteristics of the
integral 3D obtained in the proposed design are superior to those obtained in the conventional
and previous designs.

6 Conclusion

In this study, we proposed an integral 3D display system using an eye-tracking directional back-
light and a time-division display. We used a lens array with a focal length that is longer than the
previous design to increase the light ray density. We constructed a system with low crosstalk with
respect to the movement of the viewer by combining the OVZs for the left and right eye using
time-division display to form the COVZ. Furthermore, a wide SVZ of 81.4 deg horizontally and
47.6 deg vertically was realized by dynamically controlling the COVZ using eye-tracking tech-
nology. Results show that the luminance unevenness in the COVZ can be reduced by overlap-
ping and combining a part of the OVZs. In addition, we evaluated the spatial frequency
characteristics using three types of lens arrays and display systems, such as the conventional,
previous, and proposed designs. Through this, we confirmed that the depth range of 3D images
was the widest in the proposed design. Finally, this method can efficiently realize a wide viewing
zone, a wide depth range, and low crosstalk, indicating its potential application in practical inte-
gral 3D displays in the future. The limitation of the current prototype is that the luminance of the
reconstructed image is not sufficient for viewing because a general LCD is used as the display for
the eye-tracking directional backlight. As a future study, we will consider using a display with
higher luminance for the eye-tracking directional backlight to brighten the 3D image.
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