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Abstract. Knowledge of slow crack growth rate in a window material is required to determine
the design life of a window in which cracks grow under the influence of applied service stress.
Parameters that characterize crack growth rate can be measured by dynamic fatigue in which
coupons are taken to failure at several constant stress rates. The slower the stress rate, the more
time is available for cracks to grow during the strength measurement, and the lower the stress at
which the coupon fails. That is, coupons tested at a slower stress rate are weaker than coupons
tested at a faster stress rate. The rate of slow crack growth is commonly fit to either a power law
or an exponential law. The exponential law provides the more conservative estimate of design
life and is prescribed for use by the U.S. National Aeronautics and Space Administration to
design windows for manned vehicles. Well-established analytical equations are used to derive
the power law crack growth parameters from dynamic fatigue measurements of as-polished
(unindented) coupons. There are no exact analytical equations to derive power law parameters
from indented coupons or to derive exponential law parameters from unindented or indented
coupons. Approximate procedures have been used to derive crack growth parameters when there
are no exact equations. We now describe a numerical method that gives the power and expo-
nential laws for both unindented and indented coupons by least-squares fitting of dynamic
fatigue measurements. A MATLAB code is provided to carry out the calculations. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.OE.61.6.067104]
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1 Introduction

The lifetime of a brittle optical window subject to stress is limited by the rate at which micro-
scopic cracks grow under the influence of stress until the window fractures. For many window
materials, slow crack growth is promoted by atmospheric moisture, which participates in bond
breaking chemical reactions at the tip of a growing crack.1,2 It is necessary to know the upper
limit for the rate of slow crack growth to establish the design life of a window.

Slow crack growth rate is commonly characterized by dynamic fatigue experiments in which
test coupons are broken at a series of constant applied stress rates: σ̇a ¼ dσa∕dt, where σa is
applied stress, t is time, and σ̇a is the applied stress rate. The more rapidly stress is applied, the
less time there is for cracks to grow and the higher the stress at which failure occurs. Coupons are
tested either with their as-polished surface having a natural distribution of microscopic flaws,
or they are tested with a deliberate indentation that creates a reproducible flaw size larger than
natural flaws.

Dynamic fatigue experimental results are fit equally well in the measured range by two
empirical crack growth rate laws: a power law and an exponential law. When extrapolated
to low stress intensity factors (KI) common to many window applications, the two laws diverge
and can predict window lifetimes that differ by several orders of magnitude. For most materials,
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we do not have data at low KI to differentiate which crack growth law applies. In the absence of
this knowledge, U.S. National Aeronautics and Space Administration design rules prescribe that
the more conservative exponential law shall be used for window lifetime prediction.3

Power law slow crack growth parameters can be derived from dynamic fatigue measurements
of as-polished coupons by using analytical equations given in ASTM C1368.4 Fuller et al.5 gave
an approximate analytical fit to a numerical solution to derive power law parameters from
dynamic fatigue of indented coupons. There are no analytical equations to derive exponential
law parameters from dynamic fatigue of as-polished or indented coupons. Jakus et al.6 described
a numerical method to obtain the exponential law from dynamic fatigue of as-polished (unin-
dented) coupons. Choi et al.7 presented an approximate method to obtain the exponential law
from dynamic fatigue of as-polished (unindented) coupons. Ritter et al.8 gave an approximate
method to obtain the exponential law from dynamic fatigue of indented coupons. The purpose of
our paper is to present a numerical method for least-squares fitting of all data points in dynamic
fatigue of as-polished or indented coupons to find parameters for the exponential law and the
power law.

2 Dynamic Fatigue Measurements for BK7 Glass

Figure 1(a) shows dynamic fatigue measurements from Tables 1 and 2 for as-polished BK7 glass
disks immersed in water and broken in biaxial flexure at stress rates of σ̇a ¼ 0.39, 7.7, 77, or
620 MPa∕s.5 Figure 1(b) shows results from Tables 3 and 4 for BK7 glass disks indented by
a Vickers indenter prior to measuring the dynamic fatigue strength in water.

High scatter in the strength of as-polished coupons in Fig. 1(a) is typical for optically pol-
ished glass and ceramics. The standard deviation of the mean for the slope is 25% and 1.4% for
the intercept. The intercept is the ordinate when logðstress rateÞ ¼ 0. Scatter is reduced by a
factor of 10 for indented coupons in Fig. 1(b) because failure originates at the indentation crack,
which is larger than natural flaws and has a reproducible size. Fewer indented coupons are
required for testing because of the low scatter. The natural flaws in the as-polished specimens
were identified by Quinn5 as scratch/dig flaws, invisible on the polished surfaces, created during
the specimen preparation that had all surface traces eliminated by final polishing.

Fig. 1 Dynamic fatigue of BK7 glass disks in distilled water at room temperature: (a) as-polished
surface and (b) Vickers indented with 250 g load. Data from Fuller et al.5 provided by E. R. Fuller
and G. D. Quinn. Inert strength in Fig. 1(a) is shifted to the left side of the graph for clarity. Data for
these graphs are listed in Tables 1–4.
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The near equivalence of the slopes in Figs. 1(a) and 1(b) is fortuitous because of the 25%
uncertainty in the slope of Fig. 1(a). The theoretical slope in Fig. 1(a) should be 1∕ðnþ 1Þ, where
n is the exponent in the power law Eq. (2) in the next section. The theoretical slope in Fig. 1(b)
should be 1∕ðn 0 0 þ 1Þ, where the relation between n and n 0 0 is given by Eq. (15) in the paper of
Fuller et al.5 n ¼ ð4n 0 0 − 2Þ∕3. From the observed slope in Fig. 1(b) = 0.06101, we find
n 0 0 ¼ 15.391. From this value of n 0 0, we calculate n ¼ 19.855 and the slope of Fig. 1(a) should
be 1∕ðnþ 1Þ ¼ 0.04795. The observed slope in Fig. 1(a) is 0.06212� 25% ¼ 0.0466 to 0.0776,
which includes the theoretical value 0.04795. The only reason why the slopes in Figs. 1(a) and 1(b)
are nearly the same is because of the large scatter in the data in Fig. 1(a).

3 Power Law and Exponential Law for Crack Growth Rate

Two types of empirical equations are commonly used to fit observed slow crack growth rates (v).
The exponential law equation is

EQ-TARGET;temp:intralink-;e001;116;97Exponential law∶ v ¼ dc
dt

¼ voeβKI ; (1)

Table 2 Inert strength of unindented (as-polished) BK7 glass in dry nitrogen.

Failure stress (MPa) at stress rate 7.73 MPa∕s

129.83 160.17 175.96 184.65 214.50 233.67 254.98 303.69

143.42 165.83 177.89 186.51 228.91 239.67 255.67 312.28

149.33 167.69 184.03 190.79 232.57 246.50 255.74 312.90

158.79 175.82 184.58 206.16 232.78 247.60 272.90

Average ¼ 212.45 Standard deviation ¼ 50.01

Table 1 Dynamic fatigue data for unindented (as-polished) BK7 glass in water.

Stress
rate
(MPa/s)

Failure
stress
(MPa)

Stress
rate

(MPa/s)

Failure
stress
(MPa)

Stress
rate

(MPa/s)

Failure
stress
(MPa)

Stress
rate

(MPa/s)

Failure
stress
(MPa)

613.29 155.55 76.95 78.88 7.695 82.65 0.3858 75.55

613.87 80.72 77.54 113.90 7.695 57.17 0.3873 79.86

616.18 166.52 77.09 64.22 7.724 134.10 0.3873 89.86

619.71 108.68 77.10 111.02 7.761 47.34 0.3837 54.56

617.35 148.01 77.54 81.34 7.695 96.57 0.3837 85.78

619.11 124.21 7.702 73.79 0.3851 103.83

619.12 130.01 7.695 123.43 0.3858 69.91

620.28 148.71 7.681 89.02 0.3858 81.57

617.93 150.00 7.717 100.17 0.3892 78.15

615.01 125.15 7.695 73.48 0.3855 104.16

Note: Coupon diameter ¼ 76.2 mm, thickness ¼ 5.3 mm.
Load diameter ¼ 31.8 mm, support diameter ¼ 63.5 mm, Poisson’s ratio ¼ 0.21.
Data for Tables 1–4 provided by E. R. Fuller and G. D. Quinn from work in Ref. 5.
Best fit exponential law parameters are β ¼ 42.39 and log vo ¼ −14.02.

Ryan, Johnson and Harris: Deriving exponential and power law. . .

Optical Engineering 067104-3 June 2022 • Vol. 61(6)



where c is flaw size, t is time, vo and β are measured parameters, and KI is the stress intensity
factor. The elastic stress field magnitude near the crack tip is proportional to KI . The power law
slow crack growth rate is given by the equation

EQ-TARGET;temp:intralink-;e002;116;216Power law∶ v ¼ dc
dt

¼ A�
�
KI

KIc

�
n
; (2)

where A� and n are measured parameters and KIc is the critical stress intensity factor (fracture
toughness) for catastrophic failure.

Equations (1) and (2) generally fit observed failure strengths equally well in dynamic fatigue
experiments in the measured range of stress rates. However, Fig. 2 shows that the two crack
growth laws diverge when extrapolated to low stress intensity factor (KI). The exponential law
predicts higher crack growth rate at low stress intensity factor than the rate predicted by the
power law.

The low KI region is where windows with low applied stress spend most of their lives. As
cracks grow under the influence of a constant stress, crack size increases and the rate of crack

Table 3 Dynamic fatigue data for Vickers-indented BK7 glass in water.

Stress
rate
(MPa/s)

Failure
stress
(MPa)

Stress
rate

(MPa/s)

Failure
stress
(MPa)

Stress
rate

(MPa/s)

Failure
stress
(MPa)

Stress
rate

(MPa/s)

Failure
stress
(MPa)

77.17 63.97 7.702 54.92 0.07754 38.46 0.007717 35.58

77.10 62.76 7.746 52.36 0.07680 40.40 0.007739 35.75

77.32 60.07 7.710 52.12 0.07695 40.86 0.007717 35.42

76.95 64.18 7.739 52.55 0.07732 39.66 0.007710 36.62

77.17 63.05 7.754 53.42 0.07724 40.01 0.007724 36.15

77.17 61.66 7.717 52.55 0.07680 41.17

77.24 61.72 7.717 53.56 0.07732 40.98

77.54 61.80 7.746 55.70 0.07724 40.24

77.46 62.98 7.746 55.70 0.07754 40.16

77.10 60.75 7.739 53.48

Note: Vickers load ¼ 250 g.
Observed indentation diagonal length ≈ 25 μm
Observed total crack length ≈ 85 μm

Table 4 Inert strength of Vickers-indented BK7 glass in dry nitrogen.

Failure stress (MPa) at stress rate 7.73 MPa∕s

112.5 118.5 117.8 114.8 114.7 116.1 118.9 116.4

119.6 120.9 114.1 119.4 118.8 116.0 113.3 117.9

120.8 119.1 117.2 119.1 108.1 117.0 115.3 127.3

117.4 116.8 120.1 121.7 111.0 118.3 113.8 116.8

119.3

Average ¼ 117.2 Standard deviation ¼ 3.48
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growth accelerates, eventually becoming catastrophic. Because most of a window’s life is spent
at low KI, window lifetime predicted by the power law can be up to several orders of magnitude
longer than lifetime predicted by the exponential law.

For most materials, we do not have data at low KI to know which crack growth law applies.
Static fatigue experiments at a constant low stress until failure occurs can, in principle, distin-
guish the two growth laws, but such experiments are slow to conduct. Median times to failure for
unindented material in Table 1 range from 0.2 to 210 s at decreasing stress rates. For indented
material, median times range from 0.8 to 4600 s. A reviewer of this paper believes that static
fatigue testing is more realistic than dynamic fatigue because trends can change at very long
lifetimes. That point is well taken, but static fatigue measurements took that reviewer up to
2 years to conduct. Dynamic fatigue is a compromise between obtaining meaningful measure-
ments and concluding the work in days instead of years. In the absence of knowing the applicable
crack growth law, U.S. National Aeronautics and Space Administration design rules prescribe
that the more conservative exponential law Eq. (1) shall be used for window lifetime prediction.3

Power law crack growth parameters A� and n for Eq. (2) for unindented coupons are derived
from the slope and intercept of the dynamic fatigue graph in Fig. 1(a) by analytical equations
given in ASTM C1368.4 There are no analytical equations to derive exponential law parameters
from dynamic fatigue of unindented or indented coupons because Eq. (1) must be integrated
numerically. We now present a numerical method for least-squares fitting of all data points
in dynamic fatigue of as-polished (unindented) or indented coupons in Fig. 1(a) or Fig. 1(b)
to find parameters for the exponential law or the power law.

4 Stress Intensity Field for Indented Test Coupons

First, we introduce equations taken from Fuller, Lawn, Cook, and coworkers5,9–13 to analyze
dynamic fatigue of indented coupons. Then we apply these equations to find the parameters
vo and β for the exponential law Eq. (1) or A� and n for the power law Eq. (2) for indented
or unindented coupons.

Indentation of a ceramic or glass surface with a Vickers pyramidal diamond indenter leaves a
residual stress field due to an elastic/plastic mismatch resulting in a localized stress intensity
factor Kr that depends on material and indentation load and the equation is

EQ-TARGET;temp:intralink-;e003;116;125Residual stress intensity factor∶ Kr ¼
χrP

c3∕2
: (3)

Here, P is the indentation force, c is the radius (“crack size”) of the half-penny radial or
median crack produced by indentation, and χr is a proportionality constant that depends on the

Fig. 2 Comparison of exponential and power law behavior as a function of K I . Crack growth rate
parameters are derived from coupons in Fig. 1 using K Ic ¼ 0.95 MPa

ffiffiffiffi
m

p
and geometric factor

Y ¼ 2∕
ffiffiffi
π

p
in the fracture mechanics equation K I ¼ Yσa

ffiffiffi
c

p
.
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elastic modulus and hardness of the material. If stress σa is applied to an indented test coupon in
a dynamic fatigue experiment, the combined stress intensity factor is the sum of the residual
stress intensity factor in Eq. (3) plus the applied stress intensity factor, which is given by

EQ-TARGET;temp:intralink-;e004;116;699Applied stress intensity factor∶ Ka ¼ Yσa
ffiffiffi
c

p
; (4)

EQ-TARGET;temp:intralink-;e005;116;656Combined stress intensity factor∶ KI ¼ Kr þ Ka ¼
χrP

c3∕2
þ Yσa

ffiffiffi
c

p
: (5)

In Eqs. (4) and (5), Y is a geometric factor for which we choose the value Y ¼ 2∕
ffiffiffi
π

p
for a half-

penny (semicircular) crack.
When an indentation crack of initial size ci is first formed, as in an equilibrium condition, the

residual stress intensity factor is equal to the critical stress intensity factor, i.e., Kr ¼ KIc.
Substituting ci into the denominator of Eq. (3) and KIc in place of Kr gives the relation

χrP ¼ KIcc
3∕2
i . Substituting KIcc

3∕2
i for χrP in Eq. (5) gives

EQ-TARGET;temp:intralink-;e006;116;560Combined stress intensity factor∶ KI ¼ KIc

�
ci
c

�
3∕2

þ Yσa
ffiffiffi
c

p
: (6)

The inert strength of a material is the average strength measured when a coupon is taken to
failure in an inert atmosphere (such as dry nitrogen) in which slow crack growth is negligible. We
can find an expression for inert strength by replacing KI with KIc at the left side of Eq. (5) and
then solving for the applied stress needed to break the coupon:

EQ-TARGET;temp:intralink-;e007;116;466Stress at failure∶ σa ¼
�
KIc

Y
ffiffiffi
c

p
��

1 −
χrP

KIcc3∕2

�
: (7)

The applied stress σa in Eq. (7) passes through a maximum that we will call σm when the
crack size is c ¼ cm. The maximum stress σm is the inert strength, which is the strength of
indented coupons when there is no slow crack growth. To find an expression for σm, set the
derivative dσa∕dc for Eq. (7) equal to 0 and solve for the maximum stress σm, and the equation
is given by

EQ-TARGET;temp:intralink-;e008;116;360Inert strength of indented coupon∶ σm ¼ 3KIc

4Y
ffiffiffiffiffiffi
cm

p : (8)

Substitute the expression for σm from Eq. (8) back into Eq. (7) to find an expression for cm,
which is given by

EQ-TARGET;temp:intralink-;e009;116;290Crack size at maximum stress∶ cm ¼
�
4χrP
KIc

�
2∕3

: (9)

At failure in an inert atmosphere, the stress intensity factor is KI ¼ KIc, the stress is σm, and the
crack size is c ¼ cm. Making these substitutions into Eq. (6) gives

EQ-TARGET;temp:intralink-;e010;116;221KIc ¼ KIc

�
ci
cm

�
3∕2

þ Yσm
ffiffiffiffiffiffi
cm

p
: (10)

From Eq. (8) we have the relation

EQ-TARGET;temp:intralink-;e011;116;164

ffiffiffiffiffiffi
cm

p ¼ 3KIc

4Yσm;
(11)

which we can substitute for
ffiffiffiffiffiffi
cm

p
in the last term in Eq. (10) to solve for the initial indentation

flaw size ci, giving the equation

Ryan, Johnson and Harris: Deriving exponential and power law. . .

Optical Engineering 067104-6 June 2022 • Vol. 61(6)



EQ-TARGET;temp:intralink-;e012;116;735Indented crack size∶
�
ci
cm

�
3∕2

¼ 1

4
⇒ ci ¼

�
1

4

�
2∕3

cm ¼ ð0.3968Þcm: (12)

In summary, we have the following information from dynamic fatigue of indented
coupons:

1. The inert strength σm can be equated to the average strength of indented coupons measured
in dry nitrogen at a high stress rate.

2. Crack size cm for the inert strength is calculated from σm with Eq. (11).
3. The initial crack size ci from indentation is calculated from cm with Eq. (12).
4. The dynamic fatigue experiment in Fig. 1(b) gives multiple measurements of failure stress

σf for indented coupons tested at different constant stress rates σ̇a ¼ dσa∕dt.

5 Crack Propagation in Dynamic Fatigue of Indented Coupons

5.1 Evolution of K I and Crack Size in Dynamic Fatigue

Modeling the evolution of crack size and mechanical strength during dynamic fatigue is needed
to find A� and n for the power law or vo and β for the exponential law. The power law has an
analytical solution, but the exponential law requires numerical integration. We developed
a numerical method which can be modified for use with either as-polished (unindented) or
indented coupons, and for either power or exponential law crack growth.

The procedure to be described below allows us to compute curves in Fig. 3 showing
the progression of stress intensity factor and crack size during dynamic fatigue. The abscissa
is the fraction of time to failure. Actual times to failure decrease by four orders of magnitude as
the stress rate increases by four orders of magnitude. In Fig. 3(a) the stress intensity factor
decreases rapidly from its initial value KI ¼ KIc down to a nearly constant level that persists
through most of the dynamic fatigue measurement, and then climbs rapidly to failure. Crack size
in Fig. 3(b) jumps from its initial value ci and then increases gradually until it rises rapidly when
close to failure. It takes 90% of the measurement time for the crack to double in size from
the almost level value of ∼20 μm early in the experiment up to ∼40 μm near the end of the
experiment.

Fig. 3 Calculated change in (a) stress intensity factor and (b) crack size for Vickers indented
BK7 glass as a function of time. Parameters vo and β taken from Wiederhorn et al.14: vo ¼
2.3 × 10−14 m∕s and β ¼ 39.53 ðMPa

ffiffiffiffi
m

p Þ−1 for K I > 0.4 MPa
ffiffiffiffi
m

p
and vo ¼ 3.2 × 10−22 m∕s

and β ¼ 84.96 ðMPa
ffiffiffiffi
m

p Þ−1 for K I < 0.4 MPa
ffiffiffiffi
m

p
. In Wiederhorn’s paper BK7 glass is called

borosilicate crown I. Other parameters used were inert strength ¼ 117.2 MPa (Table 4),
K Ic ¼ 0.95 MPa

ffiffiffiffi
m

p
(Refs. 15 and 16), and Y ¼ 2∕

ffiffiffi
π

p
.
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5.2 Calculation Procedure

5.2.1 Initial conditions at t ¼ 0 and σa ¼ 0

Indented coupon

Initial crack size: ci ¼ ð0.3968Þcm from Eq. (12)

Initial stress intensity factor: KI ¼ KIc

Initial crack velocity: v ¼ voeβKI ¼ voeβKIc or v ¼ A�ðKI
KIc

Þn ¼ A�

Unindented coupon

EQ-TARGET;temp:intralink-;e013;116;610Initial crack size∶ ci ¼
�
KIc

Yσm

�
2

; (13)

Initial stress intensity factor: KI ¼ 0,

Initial crack velocity: v ¼ voeβKI ¼ vo or v ¼ A�ðKI
KIc

Þn ¼ 0.

5.2.2 Select time step Δt

A variable time step is used to provide sufficient modeling fidelity when crack velocity is high,
but reducing processing time at low crack velocity. For a time step beginning at time t, the step
size is chosen as

EQ-TARGET;temp:intralink-;e014;116;454Time step size∶ Δtt ¼
1

vt � 108
; (14)

EQ-TARGET;temp:intralink-;e015;116;399Maximum time step∶ Δtmax ¼
0.01 MPa

σ̇aðMPa∕sÞ ; (15)

where vt is the crack velocity at time t and σ̇a is the stress rate in MPa/s. Equation (14) advances
the crack by 10−8 m in one time step. However, if Δtt exceeds Δtmax, then use Δtmax, which
limits the change in stress in one step to 0.01 MPa.

5.2.3 New crack size at time t

The new crack size is

EQ-TARGET;temp:intralink-;e016;116;290Crack size∶ ct ¼ ct−1 þ vt−1Δtt−1; (16)

where ct−1 is the crack size in the previous step, vt−1 is the crack velocity from the previous step,
and Δtt−1 is the time step selected from the previous step.

5.2.4 New stress intensity factor at time t

The new value of KIt at time t is

EQ-TARGET;temp:intralink-;e017;116;186Indented coupon∶ KIt ¼ KIc

�
ci
ct

�
3∕2

þ Yσ̇at
ffiffiffiffi
ct

p
; (17)

EQ-TARGET;temp:intralink-;e018;116;129Unindented coupon∶ KIt ¼ Yσ̇at
ffiffiffiffi
ct

p
; (18)

where σ̇a is the stress rate and t is the elapsed time since the start of the experiment.
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5.2.5 New crack velocity at time t

The new crack velocity is v ¼ voeβKIt for the exponential law or v ¼ A�ðKIt
KIc

Þn for the power law.

5.2.6 Calculate failure stress

Repeat Secs. 5.2.2 to 5.2.5 to obtain a new time increment, new crack size, new stress intensity
factor, and new crack velocity at each new time until KIt ≥ KIc. The failure stress σf is the
highest value of σa before the stress intensity factor exceeds KIc.

5.2.7 Calculate failure stress for every measured point

Each data point in a dynamic fatigue experiment could have its own stress rate σ̇a. Generally, the
experiment is designed so that there are groups of coupons in which each member of the group
has the same stress rate. For each stress rate, calculate the predicted failure stress for a given pair
of crack growth parameters (vo and β or A� and n) for each experimental data point.

5.2.8 Find best crack growth parameters

For a given trial set of crack growth parameters (vo and β or A� and n) compute R, which is the
sum of squares of differences of logarithms between the observed failure stress and predicted
failure stress for every point and the related equation is

EQ-TARGET;temp:intralink-;e019;116;469R ¼
X

ðlogðσcalcÞ − logðσobsÞÞ2: (19)

The best crack growth parameters for each crack growth law are the pair that minimizes R.
For indented BK7 data in Tables 1 and 2, the minimum R value is 0.0049 at vo ¼ 9.57 �
10−15 m∕s and β ¼ 42.39. We observed that the minimum value of R lies in a shallow well.
Optimum slow crack growth parameters are sensitive to the number of significant digits used
for stress rate and failure stress. We found it necessary to retain four significant figures for stress
rate and failure stress as input to the computation of crack growth parameters.

5.3 Parameter Search Strategy

Any method to search for pairs of crack growth parameters to minimize R in Eq. (19) can be
used. We employed a constrained interior-point approach utilizing barrier functions in the
MATLAB (Mathworks, Natick, Massachusetts) lsqnonlin optimization solver embedded in the
function solve(). Solve() analyzes the problem structure to select specific algorithms to use. This
nonlinear constrained optimization problem should use lsqnonlin, which is confirmed by reading
the output from solve(). R in Eq. (19) is evaluated at an initial point in parameter space and at a
few surrounding points. Then, either a direct step is taken based on a finite difference gradient in
the parameter space or, failing that due to local non-convexity, a conjugate gradient step within a
trust region is taken. This process is repeated to descend down the gradient of the objective
function R until a local minimum is reached. Parameter search space is constrained within upper
and lower limits specified by user input. We demonstrated that the global minimum was obtained
by comparison of the lsqnonlin minimum with that found by another global optimization algo-
rithm (pattern search).17–20

5.4 Finding Exponential Crack Growth Law for Dynamic Fatigue of Indented
BK7 Glass Disks

For indented dynamic fatigue of BK7 glass disks in Tables 1 and 2, the procedure in Sec. 5.2
gives the following intermediate and final results.

Constants KIc ¼ 0.95 MPa
ffiffiffiffi
m

p
; Y ¼ 2∕

ffiffiffi
π

p
; σ̇a ¼ 10 MPa∕s

σm ¼ 117.2 MPa ⇒ cm ¼ 29.03 μm ⇒ ci ¼ 11.52 μm (for Y ¼ 2∕
ffiffiffi
π

p
)
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Trial values log vo ¼ −14; β ¼ 45 ðMPa∕
ffiffiffiffi
m

p Þ−1
Initial KI ¼ KIc ¼ 0.95 MPa

ffiffiffiffi
m

p
Initial crack velocity ¼ voeβKIc ¼ 3.682 × 104 m∕s
Time step Δtt ¼ 1

vt�108 ¼
1

ð3.682×104Þ�108 ¼ 2.716 × 10−13 s

New crack size at first time step ct ¼ ct−1 þ vt−1Δtt−1

EQ-TARGET;temp:intralink-;sec5.4;116;669ct ¼ 11.52 μm þ
�
3.682 × 104

m

s

�
ð2.716 × 10−13 sÞ ¼ 11.53 μm:

New stress intensity factor KIt ¼ KIc

�
ci
ct

�
3∕2 þ Yσ̇at

ffiffiffiffi
ct

p ¼ 0.9488 MPa
ffiffiffiffi
m

p
.

New crack velocity v ¼ voeβKIt ¼ 3.488 × 104 m∕s.
Repeat the calculations until KI ¼ KIc, at which stress the coupon fails. By this criterion

the failure strength is 51.05 MPa for the trial values log vo ¼ −14 and β ¼ 45 ðMPa
ffiffiffiffi
m

p Þ−1
Then we find the failure strength for each measured stress rate and compute a value of R for

the trial parameters log vo ¼ −14 and β ¼ 45 ðMPa
ffiffiffiffi
m

p Þ−1
By searching through the parameter space for log vo and β, we find that the optimum param-

eters are log vo ¼ −14.02 and β ¼ 42.39 ðMPa
ffiffiffiffi
m

p Þ−1, giving the minimum R ¼ 0.0049.

6 Method Validation

To validate our results for unindented (as-polished) coupons, Table 5 compares the power law
derived by our numerical method with the power law derived from analytical equations of ASTM
C1368. Parameters derived by both methods for three different materials are almost identical.

To validate our method for indented coupons, we can compare our power law parameters
with those from the approximate equations given by Fuller et al.5,11 Table 6 shows good agree-
ment between the two methods for three different glass materials. Raw data for indented BK7
glass and soda-lime glass have relatively low scatter (slope uncertainties of 2% and 6%). Higher
scatter of 18% in the raw data for the specialty glass did not lead to much discrepancy in the
parameters derived by our method and Fuller’s method. Fuller et al.11 state that their analytical
equations are within 1% of those from numerical integration for the exponent n and within 10%
for the multiplier (A�). We observe the same level of agreement (1% and 10%) between our
numerical integration and Fuller’s equations.

We also verified that our numerical method is predicting close to the same failure stress
calculated by the equations of ASTM C1368 for unindented coupons or by Fuller’s approximate
equations for indented coupons over the wide range of input parameters in Table 7. Over the

Table 5 Dynamic fatigue power law validation data for unindented materials in water.

Method

BK7 glassa Fused silicab Zinc sulfidec

n log½A�ðm∕sÞ� n log½A�ðm∕sÞ� n log½A�ðm∕sÞ�
ASTM4 15.10 0.12 21.82 −1.60 14.65 −2.11

This work 15.10 0.12 21.81 −1.60 14.65 −2.11

Dynamic fatigue graph Standard uncertainty Standard uncertainty Standard uncertainty

Slope Intercept Slope Intercept Slope Intercept

25% 1.40% 22% 0.97% 8.60% 0.53%

34 data points 37 data points 150 data points

aNIST 1994 data5 in Fig. 1(a). Inert strength, 213.8 MPa.
bCorning 7980 (1998) NIST unpublished data. Inert strength, 143.6 MPa.
cMultispectral zinc sulfide (2021) Navy data. Inert strength, 114.7 MPa.
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parameter space with 6 million combinations in Table 7, 99% of results are within 0.2% of the
ASTM method for unindented coupons, and within 0.84% of Fuller’s approximate method for
indented coupons. Tables 5 and 6 demonstrate that our numerical method finds the same global
minimum expected from the ASTM or Fuller equations.

7 Uncertainty in Crack Growth Parameters

To estimate uncertainties in Eq. (1) crack growth parameters β and log vo, we employ the
jackknife procedure.21,22 In this procedure, we delete the first point (σ̇a ¼ 77.17 MPa∕s,
σf ¼ 63.97 MPa) in Table 3 and compute the best values of β and log vo from the remaining
33 points. The first row of Table 8 shows that the best values are β ¼ 42.74 and
log vo ¼ −14.08. For the second row of Table 8, we replace the first point back into the set
and delete the second point. We continue deleting one point at a time from the original data
to generate 34 new values of β and log vo in columns 2 and 3 of Table 8.

The standard error (u ¼ standard deviation of the mean) of a parameter is an estimate of the
uncertainty of that parameter. At the bottom of Table 8, we compute the mean and standard error
of the 34 values of β and log vo. The jackknife estimates of the standard error ðuβÞ and variance
ðuβ2Þ for β are

EQ-TARGET;temp:intralink-;e020;116;141Standard errorðuβÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
n − 1

p
·

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðβi − β̄Þ2
n

r
; (20)

EQ-TARGET;temp:intralink-;e021;116;84Varianceðuβ2Þ ¼ ðn − 1Þ
P ðβi − β̄Þ2

n
; (21)

Table 7 Parameter space used in model testing.

n log ðA�Þ Log (Stress rate) K Ic Inert strength Y

Minimum 10 −3 −3 0.5 30 1

Maximum 34 2 2 1 230 2

Step size 1 0.05 1 0.05 40 0.25

Table 6 Dynamic fatigue power law validation data for indented materials in water.

Method

BK7 glassa Soda-lime glassb Specialty glassc

n Log½A�ðm∕sÞ� n Log½A�ðm∕sÞ� n Log½A�ðm∕sÞ�
Fuller et al.5,11 19.85 0.89 18.63 −2.27 35.68 1.20

This work 19.85 0.83 18.58 −2.33 35.67 1.16

Dynamic fatigue graph Standard uncertainty Standard uncertainty Standard uncertainty

Slope Intercept Slope Intercept Slope Intercept

1.88 0.10% 6% 0.30% 17.80% 0.81%

34 data points 9 data points 20 data points

aNIST 1994 data5 in Fig. 1(b). Inert strength ¼ 117.2 MPa.
bSoda-lime glass Navy data. Inert strength ¼ 60.2 MPa
cSpecialty glass Navy data. Inert strength ¼ 34.2 MPa.
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Table 8 Jackknife error analysis for data from Table 1 data.

Point deleted

Resulting parameters Covariance calculation

βi ai ¼ log (vo) βi − βmean ai − amean

1 42.74 −14.08 0.346 −0.062

2 42.58 −14.05 0.191 −0.034

3 42.23 −13.99 −0.160 0.028

4 42.76 −14.09 0.373 −0.067

5 42.62 −14.06 0.228 −0.041

6 42.44 −14.03 0.049 −0.009

7 42.45 −14.03 0.056 −0.010

8 42.46 −14.03 0.065 −0.012

9 42.61 −14.06 0.218 −0.039

10 42.32 −14.01 −0.069 0.012

11 42.45 −14.03 0.055 −0.009

12 42.23 −13.99 −0.158 0.025

13 42.21 −13.99 −0.178 0.028

14 42.25 −14.00 −0.142 0.022

15 42.32 −14.01 −0.070 0.011

16 42.25 −14.00 −0.141 0.022

17 42.33 −14.01 −0.057 0.009

18 42.51 −14.04 0.117 −0.019

19 42.51 −14.04 0.117 −0.019

20 42.33 −14.01 −0.065 0.010

21 42.68 −14.09 0.287 −0.075

22 42.46 −14.04 0.069 −0.018

23 42.41 −14.02 0.019 −0.005

24 42.54 −14.06 0.151 −0.039

25 42.50 −14.05 0.112 −0.029

26 42.38 −14.02 −0.014 0.004

27 42.40 −14.02 0.008 −0.002

28 42.48 −14.04 0.087 −0.023

29 42.49 −14.04 0.096 −0.025

30 42.17 −13.97 −0.220 0.050

31 42.12 −13.96 −0.272 0.062

32 42.22 −13.98 −0.172 0.039

33 41.86 −13.90 −0.535 0.123

34 42.00 −13.93 −0.393 0.090

Mean 42.3914 −14.0188 Covariance ðuaβÞ ¼
½ðn∕1Þ∕n� � Σðβi − βmeanÞ
ðai − ameanÞ ¼ −0.2644

u ¼ ðn − 1Þ1∕2·STDEV.P 1.1264 0.2374

Variance (u2) 1.2689 0.05638
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where β̄ is the mean value of β, and n is the total number of data points. We write analogous
expressions for the standard error and variance of að¼ log voÞ. The second term on the right in
Eq. (20) is the population standard deviation (STDEV.P in Excel®).

Covariance is a measure of the magnitude and direction in which a change in one variable
affects another variable. Columns 4 and 5 of Table 8 compute the jackknife estimates of the
covariance of β and log vo as follows:

EQ-TARGET;temp:intralink-;e022;116;663Covariance ðuaβÞ ¼ ðn − 1Þ
Pðβi − β̄Þðai − āÞ

n
: (22)

Let us estimate the uncertainty in crack velocity uv from the exponential crack growth law
v ¼ voeβKI for best fit parameters β ¼ 42.39 and log vo ¼ −14.02. For a chosen stress intensity
factor KI ¼ 0.40 MPa

ffiffiffiffi
m

p
, the crack velocity is v ¼ voeβKI ¼ 2.238 × 10−7 m∕s. To find the

uncertainty in crack velocity, we will use standard errors at the bottom of Table 8:
ua ¼ 0.2374, uβ ¼ 1.1264, and covariance uaβ ¼ −0.2644. The uncertainty in crack velocity
uv is found from the equation

EQ-TARGET;temp:intralink-;e023;116;544u2v ¼
�
∂v
∂a

�
2

u2a þ
�
∂v
∂β

�
2

u2β þ 2

�
∂v
∂a

��
∂v
∂β

�
uaβ: (23)

The partial derivative ∂v∕∂a ¼ ∂v∕∂ðlog voÞ is obtained by expressing the exponential law
in the form v ¼ voeβKI ¼ eln voeβKI ¼ eðlog voÞðln 10ÞeβKI ¼ ea ln 10eβKI , giving ∂v∕∂a ¼
ðln 10Þea ln 10eβKI ¼ 5.154 × 10−7. Similarly, ∂v∕∂β ¼ KIvoeβKI ¼ 8.953 × 10−8. With these
values, the uncertainty in crack velocity from Eq. (23) is uv ¼ 2.740 × 10−8 m∕s.
Combining the velocity with its uncertainty, we can say v ¼ ð2.238 � 0.274Þ × 10−7 ¼ ð1.96
to 2.51Þ × 10−7 m∕s. In this example, the covariance term in Eq. (23) is almost as large as the
sum of the two variance terms, but opposite in sign. If we had neglected covariance, the relative
uncertainty in velocity would have been 71% instead of 12%, which emphasizes the importance
of including covariance.

To assess the jackknife procedure applied to finding standard errors uslope, uintercept, and
covariance uslope;intercept for fitting a straight line, we calculated the standard errors and covariance
for the slope and intercept of the straight line in Fig. 1(b) using analytical equations 11, 13, and
X1.11 in ASTM C1368.4 Jackknife standard errors differed from those of the analytical equa-
tions by −1%, þ6%, and −27% for ua, uβ, and uaβ, respectively.

8 Discussion and Conclusion

Equations (5)–(12) from indentation fracture mechanics5,9–13 predict that the initial size of the
indentation flaw is ci ¼ ð0.3968Þcm, where cm is the crack size at failure in an inert atmosphere.
Our calculations are predicated on this calculated value of ci. It was observed at NIST that the
size of the unstable crack grows in air before the dynamic fatigue experiment begins. It is also
assumed that residual stress from indentation continues to exist throughout the mechanical test,
but diminishes according to Eq. (3) as crack size grows during the mechanical test. We could
question what is the “right” initial crack size to use in simulating dynamic fatigue and does the
residual stress relax by mechanisms other than just crack extension during the test?

Notice in Fig. 3 that the stress intensity factor drops and the crack size increases in a fraction
of a second to values that remain almost flat for much of the dynamic fatigue experiment. We
find from simulations in Table 9 that the starting value of crack size [ct−1 in Eq. (16) for the first
step of the simulation] of dynamic fatigue can be varied over a factor of 2.5 with little effect on
the derived values of the slow crack growth parameters. We still use the same theoretical value of
the indentation crack size ci ¼ ð0.3968Þcm, but we allow the crack to propagate after indentation
and prior to testing in these simulations. For the data in Tables 3 and 4, we conclude that if the
crack grows to less than 2.5 � ci between indentation and testing, then pre-test crack growth has
little effect on the derived slow crack growth parameters.
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The other question raised above is does residual stress relax over time by mechanisms other
than crack extension? We cannot provide a universal answer to this question, but we can cite one
study23 of soda-lime glass in which there was no significant decline in residual stress in air or
water even up to 40 days. Spontaneous, post-indentation crack growth was observed for more
than a day, but the residual stress driving the crack growth appeared to be constant.

In conclusion, we presented a step-by-step recipe for numerical integration of the slow crack
growth exponential rate law Eq. (1) and power rate law Eq. (2) to derive the least-squares best-fit
parameters vo and β or A� and n from dynamic fatigue experiments such as those in Figs. 1(a)
and 1(b) with as-polished or indented test coupons. A link to our MATLAB code is provided.
This code has been optimized to handle data sets with hundreds of points in a period of minutes.
Tables 5 and 6 validate the method by demonstrating that the code gives the same crack growth
parameters as found with the analytical equations of ASTM C1368 or close to the approximate
equations of Fuller et al.5,11 Section 7 describes how to use the jackknife method to estimate the
variance and covariance of the crack growth parameters and to estimate the uncertainty in crack
growth rate from those parameters. Table 9 demonstrates that limited crack growth up to 2.5
times the initial crack size after indentation and before dynamic fatigue testing has little effect
on the derived crack growth parameters.

Acknowledgments

We are grateful to Edwin R. Fuller, George D. Quinn, and Stephen W. Freiman for providing
original data and many helpful discussions of their measurements of slow crack growth.
Joel Tellinghuisen and Sung R. Choi provided helpful discussions and valuable comments.
The authors declare no conflicts of interest.

Code, Data, and Materials Availability

AMATLAB program to derive exponential law or power law slow crack growth parameters from
dynamic fatigue strength measurements of indented or unindented test coupons is available.
The archived version of the code can be freely accessed and executed through Code Ocean at
https://codeocean.com/capsule/8575168/tree/v1.
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