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Abstract. Nowadays, optical designers often use multiprocessor workstations for the virtual
prototyping of complex optical systems. Modern workstations may have several CPUs with
up to 128 virtual cores each and a non-uniform access speed to different memory areas.
Effective implementation of virtual prototyping methods and algorithms requires the develop-
ment of special methods for efficient algorithm parallelization and shared memory access. As a
basis for the virtual prototyping, we proposed a progressive backward photon mapping method
that allows for reducing the amount of data used by photon maps, speeding up the luminance
calculation process, and estimating the luminance errors for the resulting image. The main
algorithmic complexity of this method is the need to synchronize data when calculating and
accumulating the luminance of indirect and caustic illumination. The authors propose the
three-level semi-synchronous parallelization method, which consists of fully synchronous,
semi-synchronous, and asynchronous levels with illumination processing effectively distributed
among the computation threads. The main benefit of the developed method is that it does not
require additional synchronization when accumulating luminance, thus increasing the image
synthesis speed. The designed three-level method can also be used in distributed systems with
good scalability. The results obtained with virtual prototypes of complex optical systems are
presented. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0
International License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.62.2.021006]
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1 Introduction

Virtual prototyping techniques are growing increasingly in demand as new manufacturing tech-
nologies are developed. When attempting to solve a wide variety of practical issues, such as the
creation of photorealistic images, the modeling and design of optical effects, the virtual proto-
typing of intricate optical systems, etc., the task of physically accurate light propagation mod-
eling and luminance calculation is becoming more in demand. By incorporating virtual
prototyping into the production process, it is possible to speed up research and development
of the final product and, as a result, increase its competitiveness in the consumer market.
Real prototyping of systems, such as virtual, augmented, or mixed reality systems, is becoming
increasingly resource-intensive. There is demand for complicated optical device virtual proto-
typing in a variety of fields, including:

1. Examining how virtual or augmented reality technologies affect how people experience
them in the real and virtual worlds. The comfort of visual perception is a focus of research
in virtual and augmented reality systems, which include both personal wearable gadgets
and systems of head-mounted displays or head-up displays on a windshield.1

2. Investigating the viability of deploying sophisticated optical systems in virtual environ-
ments that mimic real-world environments. Such gadgets might be either a system created
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for use in a particular area or consumer optical gadgets, such as 3D scanning systems or
photography lenses. Real-world prototype manufacturing for intricate optical devices is
frequently an expensive and time-consuming procedure. Additionally, when the prototype
has been tested, it can be discovered that the original design needs to be changed, neces-
sitating the time- and money-consuming process of creating a new prototype. It should be
noted that real-world testing can occasionally be challenging, particularly if the proposed
equipment needs a particular setting, such as deep space, deep water, or an open area.

The physical accuracy of the synthesized picture is a crucial prerequisite for an approach
being employed for the outcomes from the virtual prototype of an identical optical system
to match those from the actual physical prototype. Realistic rendering, which is an integral part
of modern realistic visualization, is one of the methods widely used for virtual prototyping of
complex optical systems. However, not every rendering method is appropriate for virtual pro-
totyping needs.

To be used in a virtual prototype, the visualization method should not only visualize it but
also calculate the correct scene objects luminance at each point of the image; this is a challenge
that can be solved by realistic rendering. The ray-tracing method-based algorithms are the pri-
mary ones employed when developing realistic rendering for the purposes of virtual prototyping
of complex optical systems. The modern realistic rendering methods are mainly based on James
Kajia’s formula for calculation of the visible luminance.2 This was called the rendering equation
and is used to compute the luminance at point ~p in the direction of observation ~vr as

EQ-TARGET;temp:intralink-;e001;116;487Lð~p; ~vrÞ ¼ τð~pÞ n
2
r

n20
ðL0ð~p; ~vrÞ þ

Z
ω
Lið~p; ~viÞfð~p; ~vi; ~vrÞ cosð~n; ~viÞdωÞ: (1)

L0ð~p; ~vrÞ in Eq. (1) denotes a surface’s inherent luminance at point ~p; τð~pÞ is the medium
transmission factor along the path from the observer to the surface being viewed; nr is the
medium refractive index at the point of observation; n0 is the medium’s refractive index on the
observer; Lið~p; ~viÞ is the luminance incident on the surface in direction ~vi; fð~p; ~vi; ~vrÞ is the
bidirectional scattering distribution function (BSDF) value for the direction of the incident light
~vi and the direction of observation ~vr4; and ~n is the surface normal at the point of incidence.

Meanwhile, in 1996, Jensen3 presented an approach to compute global illumination using
photon maps. Three basic phases make up his photon mapping rendering algorithm. The process
begins with light sources emitting rays that scatter photons over the scene’s surfaces. Next, pho-
ton maps are created from the distribution of the photons, and corresponding K-dimensional tree
(KD-tree) acceleration structures are created. Finally, the observer gathers the luminance dis-
tribution from the photons seen with the camera by backward ray tracing. The photon from the
light source has flux ΔΦð~viÞ, and if it passes through the integrating sphere with radius r, which
is the field of view of a backward ray, its flux is changed to luminance4 by the following
equation:

EQ-TARGET;temp:intralink-;e002;116;259Lidcð~p; ~vrÞ ≈
1

πr2
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fð~p; ~vi; ~vrÞΔΦð~viÞ: (2)

The multiple importance sampling method5 is used to estimate the luminance of a direct
illumination with N samples:
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The photon mapping method is precise and allows for the independent calculation of the
various illumination components, such as direct light visibility, direct illumination, indirect illu-
mination, and caustic illumination. This feature is very helpful for virtual prototyping needs
because it allows for the independent evaluation of the various illumination components, such
as for stray light analysis.6
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2 Backward Photon Mapping Rendering Method

For the purpose of virtual prototyping of complex optical systems, we employ the rendering
method based on bidirectional stochastic ray tracing with backward photon mapping.7 When
backward photon maps are created, the photon map’s physical significance is altered. The light
flux that was transmitted from the light sources was kept in the forward photon map. Conversely,
the backward photon map saves a filter on the light path from the camera to the matching lumi-
nance accumulation point. In terms of the methodology, calculations resembling those used for
forward photon mapping in Eqs. (2) and (3) are employed to compute the luminance of the direct
illumination:
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τð~pÞ
πr2

XK
i¼1
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The transmission factor of the medium, which contains the compensatory component of the
BSDF irreversibility on the backward ray path, is the primary distinction of Eqs. (4) and (5).

We utilized the mean-square error across the entire image using the following formula to
measure the accuracy of the computations carried out using the progressive backward photon
mapping method after the completion of N calculation phases:
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where the image’s width and height are w and h, respectively; Li is the total luminance at the
image’s i’th pixel; and SEM2

i;N is the standard error mean at pixel after execution of N calcu-
lation phases, which is calculated using the following formula:
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where Li;j is the luminance accumulated at the image’s i’th pixel during phase j and N is the
number of previously completed computation phases. For estimating accuracy, this approach
does not need to store any intermediate rendering results; instead, it simply has to collect values
for the sums L2

i;j and Li;j after finishing each computation phase.
These concepts are applied in our implementation of the backward photon mapping-based

rendering method for the accuracy estimation. Because the method accumulates luminance over
separate phases, it can be implemented in a progressive manner. Figure 1 shows the flow chart

Fig. 1 The bidirectional ray tracing with a progressive backward photon mapping flowchart
diagram.

Zhdanov et al.: Virtual prototyping of complex optical systems. . .

Optical Engineering 021006-3 February 2023 • Vol. 62(2)



diagram for the progressive backward photon mapping rendering process. It comprises the
following four steps in each of its recurring phases:

1. The backward ray tracing with the direct illumination and direct light source visibility
components calculation. The backward photons are created by storing the traced ray’s
endpoints.

2. The creation of a backward photon map using the information obtained from the backward
ray tracing. For each scene geometry item, distinct backward photon maps are built, and
associated KD-tree acceleration structures are constructed.

3. The forward ray tracing with the calculation of caustic illumination, indirect illumination,
and direct light source visibility components.

4. The formation of the final image and accuracy estimation. If the achieved accuracy level is
insufficient, the computation process goes back to step 1.

To be able to estimate the complexity of the bidirectional ray tracing with the progressive
backward photon mapping algorithm, first, we need to introduce some parameters to define the
basic complexity of the input data. Let w and h be the image width and height, respectively, and
OS be the ray-tracing complexity of scene S. The scene complexity estimation depends on the
scene geometry and geometry intersection optimization, surface and media properties, light
sources and their types, and other scene parameters. Then each of the rendering steps has the
following complexity:

1. The backward ray-tracing step traces rays from the camera and intersects them with the
scene geometry. Its algorithmic complexity is roughly estimated as Oðw · h · OSÞ. As a
result, Oðw · hÞ backward photons are created to be intersected with forward rays in the
next steps.

2. The creation of a backward photon map algorithmic complexity depends on the number of
backward photons created in the previous step, so its algorithmic complexity is estimated
as Oðw · h · logðw · hÞÞ. The created acceleration structure requires Oðw · hÞ additional
memory.

3. The forward ray-tracing step traces rays from the light sources and intersects them with the
backward photon maps. Because the total number of forward rays traced at this step, in
general, depends on the image resolution only, Oðw · hÞ rays should be traced and inter-
sected both with scene objects and backward photon maps. For scenes containing virtual
prototypes of real optical systems, in general, the scene complexity is of a higher order
than the complexity of photon maps. So, the total algorithmic complexity of this step is
Oðw · h · OSÞ. All data is accumulated in the backward photon maps, so no additional
memory is required.

4. The formation of the final image algorithmic complexity depends only on the image
resolution and is equal to Oðw · hÞ.

As a result, the total algorithmic complexity of the single calculations phase is roughly esti-
mated as Oðw · h · OSÞ with memory consumption Oðw · hÞ. Then, the algorithmic complexity
of p phases equals Oðp · w · h · OSÞ. The algorithm’s total memory consumption does not
depend on the number of phases and is equal to Oðw · hÞ.

It should be emphasized that these estimations are very rough. In general, the complexity of
the bidirectional ray tracing with a progressive backward photon mapping algorithm is more
complex, e.g., the number of rays traced at each calculation phase depends on the data accu-
mulated in previous phases and cannot be estimated in advance. However, this should allow us to
understand the complexity of the jobs designated to each parallel thread when parallelizing the
algorithm.

The progressive backward photon mapping method creates an image that is made up of
numerous layers, which are necessary to visualize various components separately and to resume
computations from the last saved state if the optical system designer feels that the achieved
accuracy is insufficient. These layers are utilized to keep the following parameters for each pixel
of the rendered image:
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1. the accumulated luminance of directly visible light sources illumination;
2. the accumulated luminance of direct illumination;
3. the accumulated luminance of indirect illumination;
4. the accumulated luminance of caustic illumination;
5. the number of backward rays that were traced through a corresponding image pixel;
6. the number of samples per ray made to estimate the luminance of direct illumination;
7. the sum of the products of forward and backward traced ray counts;
8. the sum of squares of luminances of accumulated directly visible light sources

illumination;
9. the sum of squares of luminances of accumulated direct illumination;

10. the sum of squares of luminances of accumulated indirect illumination;
11. the sum of squares of luminances of accumulated caustic illumination;
12. the extra information needed to build the image’s statistics.

The type sizes of each of these values can range from float and int to double and INT64,
depending on the type of image being rendered in the virtual prototype. The intermediate image
data may be stored with smaller size types, whereas the final accumulated data requires a higher
data range because the number of traced rays and accuracy values increase over time. Thus, it
takes around 512 MB to store a single RGB image with a size of 1920 × 1080 pixels.
This amount increases to 1 GB when data are stored in double and INT64. If a spectral color
model is used in the virtual prototype, then an order of magnitude more data may need to be
saved just to store the luminances of one layer of one image pixel. In general, it takes about 4 GB
for an intermediate image and 8GB for the final one to keep an image with a resolution of 1920 ×
1080 pixels because spectral visualization is often carried out at 30 wavelengths.

A multiple of the image resolution also applies to the size of the backward photon maps,
which are created at each backward ray-tracing step. Studies have shown that increasing the
depth of the diffuse ray trace does not enhance the quality of the final image,8 so the depth
of a backward diffuse ray trace is restricted by the second diffuse scattering event to reduce
the amount of memory needed to store the backward photon maps. However, when rendering
with a single compute thread, the backward photon map at HD resolution in the spectral mode
with 30 wavelengths might be larger than 2 GB, necessitating a total of 6 to 10 GB of RAM to
keep both the image and the photon maps.

In addition to having processors with dozens of computational cores, modern workstations
may also have multiple processors with non-uniform memory access (NUMA) speeds to various
regions of the physical memory. Therefore, it is required to create effective shared memory
access techniques and build specialized methods and algorithms for successful parallel process-
ing of scene data to execute realistic rendering algorithms on these systems.

3 Traditional Parallelization Methods

In the context of the current study, three traditional parallel data processing methods, which are
frequently used to parallelize the rendering algorithms based on backward photon mapping, were
implemented and examined. These are synchronous and asynchronous parallelization and their
combination. The results of testing the implementations of these traditional methods are
described in Sec. 6.

3.1 Synchronous Parallelization

A fully synchronous parallelization paradigm uses all available workstation cores. Synchronous
parallelization is a conventional way of parallelization on multi-core computers when each of the
rendering stages is executed in parallel on shared data. All threads have the common scene data,
the common data for forward and backward photon maps, so the amount of RAM needed to store
intermediate computation data almost does not change as the number of computational threads
increases. It makes this method the most effective among conventional parallelization
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approaches in terms of using the workstation’s RAM resources. The algorithmic complexity of
synchronously parallelized algorithm is not changed and is equal toOðp · w · h · OSÞ, a memory
consumption Oðw · hÞ, where p is the number of rendering phases, w and h are the rendered
image width and height, respectively, andOS is the scene complexity. The theoretical speedup of
synchronous parallelization is limited by Amdahl’s law.9 The synchronous parallelization is
schematically shown in Fig. 2.

The non-parallelized portions of the rendering algorithm, the need to synchronize threads,
and the need to synchronize the memory access are the limits of the synchronous parallelization
approach, which cause a delay of the virtual prototyping as the number of the computation cores
employed rises. This slowdown is consistent with Amdahl’s law.9 Additionally, synchronous
parallelization may create an extra delay in the case of nonuniform memory access times due
to the utilization of shared data by computational threads executing on cores of several separate
NUMA nodes.

3.2 Asynchronous Parallelization

A fully asynchronous parallelization paradigm is the second common parallelization technique.
It is easy to organize a fully asynchronous rendering using a distributed computing model that
uses one main thread and a group of computational threads because the stochastic ray tracing
with progressive backward photon mapping method sums up the intermediate images obtained at
separate phases of the calculation.10 Each computational thread independently synthesizes the
whole displayed image, whereas the main thread compiles the local calculation results from all
independent computational threads to create the final image. The asynchronous parallelization is
schematically shown in Fig. 3.

This method uses the workstation’s RAM resources the least efficiently because each com-
putational thread creates its own local image and forward and backward photon maps, even
though all threads may share the same memory space and the same scene data. As a result, the
amount of RAM needed to store the intermediate computation data is a multiple of the number of
computational threads and is estimated as Oðw · h · nÞ. At the same time, because the asynchro-
nous parallelization method splits the rendering task by phases to be executed in parallel threads,
the algorithmic complexity of each separate thread is equal to Oð1n · p · w · h · OSÞ, where p is
the number of rendering phases, w and h are the rendered image width and height, respectively,
OS is the scene complexity, and n is the number of workstation compute cores. In its turn, even if
theoretical speedup of asynchronous parallelization looks linear, because RAM resources are
rigorously constrained, the size of the backward photon map created at each stage of backward
ray tracing is also constrained in addition to the image resolution. So, fewer backward and for-
ward rays are traced during each computing phase, which ultimately results in a relative increase

Fig. 2 The synchronous parallelization threads.

Fig. 3 The asynchronous parallelization threads.
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in the overhead related to processing the intermediate image data produced after each calculation
phase. This results in the fact that the number of forward ray intersections with backward photon
maps is lower in the asynchronous calculation model, even though the ray-tracing efficiency may
be higher. This happens because each computational thread’s backward photon maps are private
and cannot be intersected by the forward rays of other computational threads. Finally, in most
cases, this leads to a lower virtual prototype image accuracy, while the number of traced rays is
higher and the ray-tracing scalability looks better.

When employing the asynchronous parallelization method on a workstation with just 12
computing cores, it would take around 100 GB of RAM merely to store spectral images of
a scene and backward photon maps due to the quantity of memory needed to store the image
and backward photon maps data. Rendering at a resolution of 4 K, or 3840 × 2160, will take
roughly 400 GB of RAM, which is too much even for modern workstations.

3.3 Combination of Synchronous and Asynchronous Parallelizations

A natural option on a workstation with NUMA is to attempt to combine the high scalability
provided by asynchronous parallelization methods with the regional effectiveness of synchro-
nous parallelization techniques.11 This is accomplished by forming distinct, autonomous groups
of synchronous threads, each of which renders a full image and runs exclusively on a separate
NUMA node’s core.12 The dedicated control thread is also required; its job is to periodically
compile the state of computations from every group of synchronous computation threads into a
single final image and evaluate the achieved accuracy. Synchronous computations were carried
out on each group of four cores with a shared memory, which matched the distribution of
CPU cores across NUMA nodes and offers the quickest memory access for threads operating
in synchronous mode.13 The combination of synchronous and asynchronous parallelizations is
schematically shown in Fig. 4.

The combination of synchronous and asynchronous parallelization methods splits the ren-
dering task by phases for each phase to be executed in a separate group of threads running on a
single NUMA node, so the algorithmic complexity of each of these separate groups of threads is
equal to Oð1N · p · w · h · OSÞ, where p is the number of rendering phases, w and h are the ren-
dered image width and height, respectively, OS is the scene complexity, and N is the number of
workstation NUMA nodes. As can be seen, the benefit of this approach is the expected linear
scalability of ray tracing and processing speed with an increase in the number of the utilized
workstation’s NUMA nodes. Combining synchronous and asynchronous parallel computations
uses RAM resources at a rate that is a multiple of the number of NUMA nodes in the workstation,
which, along with the binding of each synchronous group’s threads to cores of a single NUMA
node,14 eliminates the need to access memory of other NUMA nodes in all cases except when
collecting the intermediate visualization results. The memory consumption of this method is
Oðw · h · NÞ. It should be pointed out that the number of NUMA nodes grows much more
slowly than the number of compute cores, and even for a high-performance workstation, the
number of NUMA nodes does not exceed 8. So, the memory consumption of this method is
significantly better than purely asynchronous calculations and is acceptable for use in the
rendering algorithm.

Because synchronously executed sections of the algorithm impair the effectiveness of ray
tracing, the overall number of rays traced and processed is substantially smaller when compared

Fig. 4 The combination of synchronous and asynchronous parallelization threads distributed
among NUMA nodes.
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with utilizing the entirely asynchronous technique. Therefore, the primary objective of the
current study was to accelerate, as much as possible, the synchronously executed part of the
parallelization of rendering using the backward photon mapping approach with keeping the
RAM resources consumption almost intact.

4 Two-Level Semi-synchronous Parallelization Method

In our research, we propose a new two-level semi-synchronous parallelization method for the real-
istic rendering algorithms that are based on the progressive backward photon mapping method.
The designed parallelization method consists of two levels: completely synchronous and semi-
synchronous. This method does not directly utilize asynchronous calculations to make effective
use of the RAM and CPU resources of a workstation with uniform memory access. The approach
combines the benefits of synchronous calculations when utilizing a limited number of cores with
the natural scalability of asynchronous calculations when utilizing a large number of cores.

4.1 Two Levels of the Threads Hierarchy

Fully synchronous parallel calculations constitute the first level. The entire image is rendered
using a synchronous group of first-level threads, using shared scene data and backward photon
maps. Each of the first-level thread groups uses a random mask built with repeating
32 × 32 pixels tiles to render an image that only contains a fragment of the complete scene
image. A first-level synchronous group of threads is schematically shown in Fig. 5.

As was stated in the previous section, increasing the number of synchronously running
threads too much results in a significant calculation slowdown. In our research, we found that,
even if the synchronous parallelization of the rendering algorithm can be implemented effec-
tively, a noticeable slowdown appears if the number of parallel threads exceeds four. This result
is consistent with Amdahl’s law9 and is expected. So, we used either 2 or 4 threads as the size of
the synchronous group of threads.

Semi-synchrony is added at the second parallelization level. The second-level threads group
is made up of first-level thread groups, and each of them individually renders a sub-image of the
scene’s image using a 32 × 32 pixels random mask. As a result, the second-level thread group
visualizes the entire image and distributes masks for the first-level groups, whereas the first-level
thread groups each create a random portion of the final image on their own. First and second-
level thread groups are schematically shown in Fig. 6.

The second-level’s thread group synchronizes and forms a whole image after a certain num-
ber of calculation phases. Following synchronization, the computations proceed with the first-
level threads’ random masks being re-randomized. This strategy is used to decrease the potential
delay brought on by thread synchronization. This thread synchronization is performed in the
following steps:

1. The main thread of a semi-synchronous level receives the signal when one of the groups of
synchronous computation threads completes the execution of a predetermined number of
phases of the rendering algorithm.

2. The main thread sends notification signals to stop all other synchronous first-level thread
group calculations.

Fig. 5 The group of synchronous threads that executes the realistic rendering of the sub-image
defined by a given mask.
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3. Upon receiving a stop notification from a parent semi-synchronous level main thread, a
first-level thread group tries to stop its execution. If calculations are in the forward
ray-tracing stage, they can be interrupted immediately without losing any data. If not,
the thread group waits until the forward ray tracing begins and interrupts the computations.

4. The semi-synchronous level’s main thread creates a whole scene image and distributes
new random masks to groups of synchronous threads.

5. The computations of the synchronous thread groups are carried out by the main thread for
the next number of phases as stated.

The time diagram of interaction between threads of the semi-synchronous level are shown
in Fig. 7.

Fig. 6 The group of semi-synchronous threads rendering the entire image and consisting of
groups of synchronous threads with their own masks.

Fig. 7 The time diagram for a group of semi-synchronous threads rendering the entire
image.
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It should be emphasized that, when compared with the conventional synchronous compu-
tation model, the employment of a pseudo-asynchronous computation model at the semi-
synchronous computing level does not result in a considerable increase in the amount of used
RAM. This is because there is no overlap of ray-tracing operations across the various synchro-
nous thread groups, allowing each group to render its own part of the whole image while still
using the same image data. Additionally, the backward photon maps created by each thread are
only created based on their masks, which reduces the size of each map by the number of
semi-synchronously running groups of threads and prevents an increase in RAM use.

Such task distribution among groups of threads at the semi-synchronous computing level
allows us to lower the algorithmic complexity of calculations performed by each group of
synchronous threads by the number of groups at this level. Each synchronous group traces
Oð1mw · hÞ rays at each rendering phase, where m is a number of synchronous groups at the
semi-synchronous level and w and h are the rendered image width and height, respectively.
Because the scene complexity is of a higher order than the photon maps complexity, it is possible
to estimate the algorithmic complexity of calculations performed by each synchronous group of
threads as Oð1m · p · w · h · OSÞ, where p is the number of rendering phases and OS is the scene
complexity. At the same time, the memory consumption of this thread group is estimated as
Oð1m · w · hÞ. Then, for a semi-synchronous group of m synchronous groups, the total memory
consumption would be equal to one of purely synchronous calculations, which is Oðw · hÞ.
The task homogeneity between several groups of synchronous threads should allow for
obtaining the linear acceleration with increasing the number of groups of threads of the
semi-synchronous level.

The achievement of task homogeneity for backward ray tracing between several groups of
synchronous threads is made possible by the random selection of masks. The 32 × 32 pixels

mask showed good performance on up to 16-core uniform memory access CPUs; however,
if their number is higher, the mask’s size can be expanded up to 128 × 128 pixels or more.
In the case of an unequal speed of the algorithm in multiple processing threads, the periodic
update of random masks is especially necessary to ensure the homogeneity of the distribution
of the backward rays over the scene. Because all threads share the same shared memory space,
they all have access to the same scene and picture data while also having separate backward
photon mappings. Moreover, taking into account that synchronous thread groups render inde-
pendent image areas, they can share same intermediate and final image objects as they operate on
non-intersecting memory areas.

Our tests show that, if a semi-synchronous computational level’s synchronization interval is
between 4 and 8, then individual groups of synchronous computational threads operate almost
synchronously, and the interruption of computations happens when all threads are at the step of
forward ray tracing, which does not necessitate additional CPU time nor distort the final image.

4.2 Asynchronous Access to Backward Photon Maps at the
Semi-synchronous Parallelization Level

When indirect and caustic luminance values are accumulated at image points during the forward
ray-tracing phase, it is possible that the forward ray will not intersect the backward photon map
of the corresponding synchronous group. However, it may be able to intersect backward photons
of another first-level group of synchronous threads that are located in the same shared memory
and, as a result, add luminance to image pixels. For this need, an algorithm for asynchronous
access to backward photon maps of other first-level groups of synchronous threads that only
employ atomic operations was proposed to increase the effectiveness of using the results of the
forward ray tracing at the stage of the accumulation of indirect and caustic luminance values. To
prevent shared memory access conflicts, the atomic addition and atomic compare-and-swap
operations are used while accounting for the luminance values of the indirect and caustic lighting
at the same points of the image from different threads.

Additionally, to avoid memory leaks and accuracy loss, the thread must be forbidden from
recycling its backward photon maps when some thread is accessing them. To achieve this, a
solely atomic operations-based technique for opening and closing access to backward photon
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maps was created. Due to the fact that the proposed algorithm does not require synchronization,
the ray-tracing process is not slowed down by the access to backward photon maps, and the
efficiency of searching for the intersection of rays with backward photon maps is increased.
The main idea of the proposed approach is that each backward photon map keeps a flag that
notifies other threads when the data on this map is available, allowing other threads to access the
backward photon maps of a certain synchronous threads group when these maps exist. The
progressive backward photon mapping method should thus include two extra steps: opening
access to one’s backward photon maps before beginning the forward ray-tracing phase and shut-
ting access to one’s own backward photon maps when the forward ray-tracing step is complete.
At the same time, the maps owner thread should continue forward ray tracing until all other
threads release the relevant map because backward photon maps cannot be closed while they
are being updated by other threads. Only then should the owner thread go on to the next render-
ing stage. Figure 8 shows the required modification of the flowchart for the progressive back-
ward photon mapping rendering method to be implemented in the semi-synchronous parallel
computation environment.

The algorithm’s core point is that each backward photon map is maintained with a counter
indicating how many threads are actively interacting with the relevant backward photon map’s
data. This counter is a flag indicating that maps exist and are open for an update by other threads.
A counter value of 0 denotes the absence of the map, whereas a value larger than 0 denotes the
existence of the map and the ability to utilize it to accumulate luminance values at corresponding
image pixels.

Opening access to photon maps is executed by an atomic increment of the corresponding flag
counter by 1. As for the closing, the photon maps are considered to be no longer in use by other
threads, access to them is closed, and the rendering process may go on to the next stage of the
rendering algorithm after the thread that created them successfully completed the compare-and-
swap operation with the swap of the corresponding flag counter from 1 to 0. As a result, after the
backward photon maps and corresponding acceleration structures were created, the following
modifications are introduced in the forward ray-tracing stage of the first-level synchronous
threads group:

1. The atomic increment operation is used to increase the flag counter for the relevant back-
ward photon map by 1, indicating that the map is present and available for an update by
other threads.

2. The forward ray tracing and luminance accumulation are started with two stopping
criteria: the first is the number of forward rays traced and the second is the successful
completion of the atomic compare-and-swap operation that reduces the number of active
threads from 1 to 0 after completing the tracing the required number of rays.

The flowchart in Fig. 9 shows this procedure.
A similar procedure applies when accessing the backward photon maps of other synchronous

thread groups: if the corresponding thread flag counter is positive and is successfully

Fig. 8 The flowchart for the parallel modification of the progressive backward photon mapping
rendering algorithm.
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incremented using a compare-and-swap operation, then access to the maps is granted, and maps
can be used to account for indirect and caustic luminances. The counter is atomically decreased
by 1 upon the completion of updating the maps. Atomic addition operations are also employed
when adding up luminance values. The following steps are taken by a thread if it wants to access
the backward photon maps of another first-level synchronous thread group while tracing a
forward ray:

1. If the next first-level thread group photon maps flag counter is positive, then attempt is
made to increment it using the atomic compare-and-swap operation. In the case of failure,
the thread proceeds to the next available photon maps.

2. If the compare-and-swap operation was successful, the forward ray’s intersection with the
backward photons of the backward photon map is executed. If the intersection is found,
then the luminance value is accumulated at the corresponding pixels of the intermediate
image using atomic addition operations. The corresponding map statistics are also updated
for correct accuracy estimation.

3. After the work with the backward photon map is finished, the corresponding flag counter
is atomically decremented by 1 to release the maps.

The statistics that are accumulated when accessing backward photon maps include the num-
ber of forward rays processed with this photon map. This ray counter is required to calculate the
final luminance distribution in image pixels and achieved accuracies.

The flowchart in Fig. 10 shows the modification to the algorithm of the forward ray tracing to
use all backward photon maps that are available at the moment when calculating the caustic and
indirect luminance values.

As a result, a thread from a different synchronous thread group uses the backward photon
maps data, and the group that originally generated it continues the forward ray tracing step and
luminance calculation. The synchronous threads group will cease the forward ray tracing as soon
as no thread utilizes the backward photon maps of this threads group and the stopping require-
ment is satisfied, at which point it will go on to the subsequent rendering stage. Access to the
memory of other synchronous thread groups is restricted by the criterion set by the time needed
to finish the tracing of a preset number of rays to prevent the possibility of mutual blocking of
threads during the forward ray tracing phase.

5 Three-Level Semi-synchronous Parallelization Method

A three-level rendering parallelization method was created as part of the current study to handle
multiprocessor workstations with NUMA. This approach’s fundamental concept is to integrate
the two-level semi-synchronous parallelization method with the previously studied traditional
methods of combining synchronous and asynchronous parallel computations. The three levels of
this approach are synchronous, semi-synchronous, and asynchronous:

Fig. 9 The flowchart for the forward ray-tracing phase with granting other threads access to the
backward photon maps.
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1. Similar to two-level parallelization, the fully synchronous parallel computations form the
first parallelization level. Each synchronous thread group contributes to the overall scene
image, which is defined by a random mask. The second level combines several synchro-
nous thread groups with access to one another’s first-level groups’ backward photon maps
into a semi-synchronous parallel calculations level.

2. The second level’s main thread constructs masks, synchronizes group calculations, builds
a whole scene image, and then creates new random masks.

3. The third level is a completely asynchronous calculation without shared memory.

To operate the asynchronous calculation on the third level, we propose using the distributed
computation model. So, the third parallelization level consists of a group of control processes
running a two-level parallel rendering. The number of processes is equal to the number of
NUMA nodes of the workstation. One of them is the main rendering process that controls the
whole rendering process and launches additional local rendering processes, one for each NUMA
node.

TCP/IP and a loopback interface are used to arrange communication with local rendering
processes. This enables the three-level parallel rendering interfaces to be used in a distributed
environment and launch remote rendering processes to add them to the same rendering threads
and processes hierarchy.

On systems with several NUMA nodes, the third level of parallelization organizes effective
computations using an asynchronous distributed computing architecture. The execution of each
of the third-level top threads is tightly restricted to the cores of a single NUMA node and is not
permitted on the cores of any other NUMA nodes.

Two-level parallel renderings are performed by both the main and computational processes.
The main thread regularly gathers the status of both local and distant computations to update the
state of the main rendering result without pausing the computations. Based on the connection
speed, the data collection frequency is chosen such that local intermediate rendering data is
gathered more frequently and remote intermediate rendering data is gathered less frequently.

As described in previous sections, the two top levels of the parallelization hierarchy effec-
tively distribute the rendering tasks between groups of synchronous threads with high homo-
geneity. The asynchronous level distributes rendering phases among NUMA nodes and remote
servers, whereas the semi-synchronous level distributes random parts of the image among

Fig. 10 The flowchart for the single ray-tracing phase with accessing backward photon maps of all
available first-level threads of the same semi-synchronous level.
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synchronous groups of threads. So it is possible to estimate the complexity and memory
consumption of each parallelization level.

The algorithmic complexity of calculations performed by a synchronous group of threads of
the first level is Oð 1

m·N · p · w · h · OSÞ, where p is the number of rendering phases, w and h are
the rendered image width and height, respectively, OS is the scene complexity, m is the number
of synchronous thread groups, and N is the number of NUMA nodes. At the same time, the
memory consumption of such thread group is estimated as Oð1m · w · hÞ. The synchronous par-
allelization is limited to 4 threads per group, which results in an almost linear calculation
speedup.

The second-level group of threads executes calculations with complexity
Oð1N · p · w · h · OSÞ and memory consumptionOðw · hÞ. Due to the task homogeneity between
different groups of synchronous threads, this level also results in almost linear acceleration.

The third-level group of threads executes the whole calculations with complexity Oðp · w ·
h · OSÞ and memory consumption OðN · w · hÞ. The asynchrony of calculation at the top level
with a relatively low number of asynchronous groups allows us to execute calculations without
lowering the sizes of the photon maps and keeping the acceleration almost linear.

A three-level structure of threads and processes is shown in Fig. 11. The time diagram of the
interaction between the main third-level process and single local rendering process is shown in
Fig. 12. Each of these processes is running a two-level semi-synchronous group of threads, as
described in the previous section.

The three-level rendering threads structure allows us to efficiently utilize all local resources
as well as manage the various rendering models, such as rendering using multiple multiprocessor
workstations or rendering using a basic machine (laptop) and resources from a distant
server.

By binding each of the synchronous group’s threads to cores on a single NUMA node and
using all available NUMA nodes of the workstation, the three-level semi-synchronous paralle-
lization method effectively uses RAM resources similarly to combining synchronous and asyn-
chronous parallel computations. This approach eliminates the third-level thread groups’ need to
access the memory of other NUMA nodes, except for the case of collecting intermediate render-
ing results.

6 Simulation Results

The two-level and three-level semi-synchronous parallelization methods described in this article
were tested on two scenes containing virtual prototypes of complex optical devices.

Testing was performed on twoworkstations. The first workstation was equipped with a single
Intel Xeon 6230 2.1GHz 12-core processor and 128GB RAM running at 2933 MHz with uni-
form memory access and a single NUMA node. Because this workstation has uniform memory
access, it has a constant memory idle latency of 92 ns and memory bandwidth of 77.5 GB∕s.

Fig. 11 The three-level hierarchy of local and remote processes and threads.
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The second workstation was equipped with two AMD EPYC 7281 2.1GHz 16-core process-
ors and 256GB RAM running at 2666 MH. The specificity of the AMD EPYC processor series is
that each processor has nonuniform memory access with several NUMA nodes. In the case of
AMD EPYC 7281, there are 4 NUMA nodes with 4 cores in each CPU. So in the case of two
CPUs, it results in a complex workstation with 8 NUMA nodes and 32 cores total. Moreover, the
memory latency and memory bandwidth significantly depend on the mutual location of cores
inside the workstation. For cores of the same NUMA node, the memory idle latency is about
89 ns, and the memory bandwidth is about 19.8 GB∕s. If cores are located at different NUMA
nodes of the same CPU, then the memory latency increases to about 136 ns, and the memory
bandwidth drops to about 17.4 GB∕s. If the cores are located in different CPUs, then the change
is more significant: the memory latency increases up to 240 ns, and memory bandwidth drops
down to 8.3 GB∕s.

The results section follows the order of the experiments that were used when evaluating the
parallelization methods described in this paper and are grouped by the method type. The follow-
ing combinations of parallelization methods and workstations were evaluated for virtual
prototyping:

1. Traditional parallelization methods. These methods were evaluated on both test worksta-
tions. Traditional methods include:

• Synchronous parallelization method.
• Asynchronous parallelization method.

Fig. 12 The time diagram for a top level of three-level threads hierarchy for the main process and a
single local process, each of them running its own set of semi-synchronous threads as described
in Sec. 4.
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• Two-level semi-synchronous parallelization method. This method was evaluated only
on the workstation with uniform memory access (the workstation with a single Intel
Xeon CPU).

2. Parallelization methods that take the information about the distribution of cores among
NUMA nodes of the workstation. These methods were evaluated only on the workstation
with NUMA (the workstation with dual AMD EPYC CPUs). These methods include:

• Combination of traditional synchronous and asynchronous parallelization methods.
• Three-level semi-synchronous parallelization method.

6.1 Test Scenes Setup

Each combination of a parallelization method and workstation listed above was tested on scenes
containing virtual prototypes of two real optical devices.

The first scene is a model of the optical system of the head-up display (HUD).15 The principal
scheme of the HUD system is shown in Fig. 13. The LCD matrix, with a dynamic slide displaying
some information is illuminated by laser LEDs and projected onto a diffuse screen, located at the
focus of the collimation system projecting the image of the slide through the combiner to the observ-
er’s eye. At the same time, the observer sees the surrounding space through the same combiner. The
eye model is defined by the real eye characteristics such as pupil size, field of view, and focal length.

The second scene is a model of a virtual prototype of the image-forming optical system of the
lens camera placed in a virtual environment.16 The test scene setup and image formed on the
camera sensor are shown in Fig. 14. The camera lens has a field of view of 40 deg and is directed

Fig. 13 The principal scheme of the head-up display test scene.

Fig. 14 The setup of the lens system test scene. The rendered image is shown in the left part. The
right part shows the whole scene setup displayed with the OpenGL visualization.
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at the vase with flowers on the table. The scene is illuminated by a set of light sources, with one
high-intensity light source being located near the lens field of view. Due to the camera lens
surfaces have Fresnel surface properties, the interreflections between the lens surfaces cause
ghosts to appear on the camera sensor.

6.2 Traditional Parallelization Methods

At first, traditional parallelization methods that include synchronous and asynchronous paral-
lelizations, were tested with both workstations, first, using the head-up display system test scenes
and then using the lens system scene. Each test scene was rendered for 30 min, and the number of
traced forward and backward rays was recorded. The ray tracing speedup was calculated as the
total number of traced rays and normalized to the number of rays traced with a single core when
using the corresponding method. This speedup value allows us to estimate the scalability of each
method when increasing the number of cores without taking the number of intersections of for-
ward and backward rays into account. Achieved accuracies were evaluated only on the maxi-
mum load of each workstation, i.e., when using all available cores, to compare the rendering
efficiency of each of the tested methods. Test results are shown using tables and speedup graphs.

Tables 1 and 2 give the results of testing the traditional synchronous and asynchronous par-
allelization methods applied to the head-up display system scene on workstations with uniform
and NUMA, respectively. The corresponding graph of dependence of the ray tracing speedup
from the number of used computation cores is shown in Fig. 15

Table 1 Testing results of the application of the synchronous and asynchronous parallelization
methods to the simulation of the virtual prototype of the head-up display system scene on the
workstation with uniform memory access with 30 min simulation time.

Number of
used cores

Synchronous parallelization Asynchronous parallelization

Forward
rays

Backward
rays

Tracing
speedup

Forward
rays

Backward
rays

Tracing
speedup

1 core 60.8M 27.7M 1.0 64.3M 28.9M 1.0

2 cores 87.8M 50.9M 1.6 128.9M 37.6M 1.8

4 cores 170.3M 83.6M 2.9 252.3M 60.9M 3.4

8 cores 278.3M 142.2M 4.8 626.0M 97.7M 7.8

12 cores 406.4M 215.7M 7.0 972.4M 118.5M 11.7

Table 2 Testing results of the application of the synchronous and asynchronous parallelization
methods to the simulation of the virtual prototype of the head-up display system scene on the
workstation with NUMA with 30 min simulation time.

Number of
used cores

Synchronous parallelization Asynchronous parallelization

Forward
rays

Backward
rays

Tracing
speedup

Forward
rays

Backward
rays

Tracing
speedup

1 core 41.4M 22.3M 1.0 44.6M 23.6M 1.0

4 cores 132.4M 71.4M 3.2 215.3M 49.3M 3.9

8 cores 223.6M 120.4M 5.4 472.2M 78.4M 8.1

16 cores 388.2M 196.3M 9.2 982.6M 116.9M 16.1

24 cores 545.3M 282.1M 13.0 1381.4M 182.9M 22.9

32 cores 681.3M 345.1M 16.1 1968.1M 233.9M 32.3
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Tables 3 and 4 give the results of testing the traditional synchronous and asynchronous par-
allelization methods applied to the lens system scene on workstations with uniform and NUMA,
respectively. The corresponding graph of dependence of the ray-tracing speedup from the num-
ber of used computation cores is shown in Fig. 16

After 30 min of calculations on the workstation with uniform memory access, the synchro-
nous parallelization method achieved the accuracy of 31.1%, and the asynchronous paralleliza-
tion method achieved the accuracy of 34.2% on a head-up display system scene. A lens system
scene achieved the accuracy of 19% with synchronous parallelization and 20.4% with asynchro-
nous parallelization. On the workstation with NUMA, the synchronous parallelization method
achieved the accuracy of 27%, and the asynchronous parallelization method achieved the accu-
racy of 28.2% on a head-up display system scene. At the same time, a lens system scene achieved
the accuracy of 14.1% with synchronous parallelization and 15.9% with asynchronous
parallelization.

The main drawbacks of the synchronous parallelization approach are brought on by the pres-
ence of non-parallelized parts of the rendering algorithm and the requirement to synchronize
threads, which causes a rendering slowdown as the number of compute cores increases.
This slowdown was anticipated due to Amdahl’s law.9 The NUMA of the second test worksta-
tion led to an additional slowdown of the synchronous parallelization method, which was a result

Fig. 15 Ray-tracing speedup achieved when using the synchronous and asynchronous paralle-
lization methods to parallelize the simulation of the virtual prototype applied to the head-up display
system scene on workstations with uniform and NUMA.

Table 3 Testing results of the application of the synchronous and asynchronous parallelization
methods to the simulation of the virtual prototype of the lens system scene on the workstation with
uniform memory access with 30 min simulation time.

Number of
used cores

Synchronous parallelization Asynchronous parallelization

Forward
rays

Backward
rays

Tracing
speedup

Forward
rays

Backward
rays

Tracing
speedup

1 core 45.9M 35.1M 1.0 56.7M 41.1M 1.0

2 cores 85.5M 57.9M 1.8 87.3M 60.6M 1.5

4 cores 147.6M 99.6M 3.1 266.7M 110.4M 3.9

8 cores 186.6M 121.8M 3.8 616.2M 150.9M 7.8

12 cores 169.2M 114.3M 3.5 923.7M 167.7M 11.2

Zhdanov et al.: Virtual prototyping of complex optical systems. . .

Optical Engineering 021006-18 February 2023 • Vol. 62(2)



of synchronous computational threads running on different NUMA nodes’ cores utilizing the
shared data.

As for the asynchronous parallelization approach, it should be noted that, despite the ray-
tracing speedup nearly linearly depending on the number of used computation cores, the
achieved accuracy is noticeably lower. The reason for this is the decrease in the number of inter-
sections of forward rays with backward photons of backward photon maps because each com-
putation thread has its own independent photon maps, and these maps are not available for
intersection by forward rays of other computation threads. In addition, full thread independence
increases the use of memory resources by a multiple of the number of threads, which results in
excess memory usage, especially in the case of rendering being performed in the spectral
color model.

6.3 Two-level Semi-synchronous Parallelization Method

Because the designed two-level semi-synchronous parallelization method is intended to be used
in a shared memory environment and is not expected to give significant calculation speedup on a
workstation with NUMA, it was only tested on a first test workstation with a single 12-core

Fig. 16 Ray-tracing speedup achieved when using the synchronous and asynchronous paralle-
lization methods to parallelize the simulation of the virtual prototype of the lens system scene on
workstations with uniform and NUMA.

Table 4 Testing results of the application of the synchronous and asynchronous parallelization
methods to the simulation of the virtual prototype of the lens system scene on the workstation with
NUMA with 30 min simulation time.

Number of
used cores

Synchronous parallelization Asynchronous parallelization

Forward
rays

Backward
rays

Tracing
speedup

Forward
rays

Backward
rays

Tracing
speedup

1 core 38.1M 28.5M 1.0 42.0M 30.6M 1.0

4 cores 122.7M 83.4M 3.1 216.3M 90.0M 4.2

8 cores 151.8M 101.7M 3.8 518.1M 122.7M 8.8

16 cores 156.3M 107.7M 4.0 988.2M 162.3M 15.8

24 cores 248.7M 172.2M 6.3 1299.6M 250.2M 21.3

32 cores 244.8M 173.1M 6.3 1691.7M 279.9M 27.1
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Intel Xeon CPU. The number of threads running synchronously in the groups of the first level
was 2.

Table 5 gives the test results after 30 min of computation using the two-level semi-
synchronous parallelization method with the progressive backward photon mapping on the
workstation with the uniform memory access (single 12-core Intel Xeon processor). The match-
ing graph of the acceleration for the total number of traced and processed rays and the number of
computing threads employed is shown in Fig. 17.

After 30 min of calculation with the two-level semi-synchronous parallelization methods an
accuracy of 30.1% was achieved for the head-up display system scene and 15.6% for the lens
system scene. The combination of higher computation asynchrony and absence of fully asyn-
chronous threads accounts for the improved ray processing efficiency. By granting mutual asyn-
chronous access to backward photon maps of various thread groups, the computation accuracy
significantly increased.

The obtained test results demonstrate that the two-level semi-synchronous parallelization
method scales similarly with a fully asynchronous computation while being more efficient
in rendering. It also uses roughly the same amount of memory as the straightforward synchro-
nous parallelization method and does not call for any additional private memory.

Table 5 Testing results of the application of the two-level semi-synchronous parallelization meth-
ods to the simulation of the virtual prototype of the head-up display system and lens system
scenes on the workstation with uniform memory access with 30 min simulation time.

Number of
used cores

HUD system scene Lens system scene

Forward
rays

Backward
rays

Tracing
speedup

Forward
rays

Backward
rays

Tracing
speedup

1 core 56.3M 29.7M 1.0 46.2M 41.1M 1.0

2 cores 134.8M 51.9M 2.2 139.5M 60.3M 2.3

4 cores 275.0M 92.3M 4.3 243.9M 103.2M 4.0

8 cores 529.0M 186.1M 8.3 497.1M 204.9M 8.0

12 cores 813.4M 212.9M 11.9 740.7M 309.0M 12.0

Fig. 17 Ray-tracing speedup achieved when using the two-level semi-synchronous parallelization
method to parallelize rendering with backward photon mapping applied to the test scenes on work-
station with uniform memory access in comparison with traditional parallelization methods.
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6.4 Combination of Synchronous and Asynchronous Parallelizations, and
Three-level Semi-synchronous Parallelization

Both the combination of traditional synchronous and asynchronous parallelization methods
and the designed three-level semi-synchronous parallelization method were only tested on a
workstation with NUMA (dual 16-core AMD EPYC CPUs). The reason for this is that both
of these methods are designed to distribute rendering tasks among NUMA nodes, so if only
one NUMA node is present, then the method is reduced to a simple synchronous or two-level
semi-synchronous parallelization and does not give any extra benefits. In this test, the number of
threads running in synchronous groups of the first level of the three-level parallelization method
was 2.

Tables 6 and 7 give the test results obtained after 30 min of rendering using the combination
of synchronous and asynchronous parallelization methods and the three-level semi-synchronous
parallelization method when rendering the test scenes using the progressive backward photon
mapping method on the workstation with the NUMA (dual 16-core AMD EPYC processors).
The matching graph of the acceleration for the total number of traced and processed rays and the
number of computing threads is shown in Fig. 18.

Table 6 Testing results of the application of the combination of synchronous and asynchronous
and three-level semi-synchronous parallelization methods to rendering with backward photon
mapping applied to the HUD system scene on the workstation with NUMA for 30 min.

Number of
used cores

Combination of synchronous and
asynchronous parallelization

Three-level semi-synchronous
parallelization

Forward
rays

Backward
rays

Tracing
speedup

Forward
rays

Backward
rays

Tracing
speedup

1 core 33.1M 17.8M 1.0 41.4M 22.3M 1.0

4 cores 115.9M 62.4M 3.5 236.5M 80.3M 4.2

8 cores 229.7M 123.8M 6.9 457.1M 155.6M 8.1

16 cores 471.0M 253.7M 14.2 877.7M 298.9M 15.5

24 cores 673.4M 363.0M 20.3 1253.7M 427.4M 22.2

32 cores 904.0M 488.4M 27.3 1647.3M 561.2M 29.2

Table 7 Testing results of the application of the combination of synchronous and asynchronous,
and three-level semi-synchronous parallelization methods to rendering with backward photon
mapping applied to the lens system scene on the workstation with NUMA for 30 min.

Number of
used cores

Combination of synchronous and
asynchronous parallelization

Three-level semi-synchronous
parallelization

Forward
rays

Backward
rays

Tracing
speedup

Forward
rays

Backward
rays

Tracing
speedup

1 core 34.8M 26.1M 1.0 35.1M 30.6M 1.0

4 cores 119.4M 81.0M 3.3 205.2M 85.5M 4.4

8 cores 231.9M 157.5M 6.4 406.5M 172.2M 8.8

16 cores 407.7M 285.3M 11.4 764.1M 324.0M 16.6

24 cores 703.8M 481.8M 19.5 1107.6M 468.9M 24.0

32 cores 963.3M 666.9M 26.8 1539.0M 651.6M 33.3
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Additionally, tests showed that the combination of traditional synchronous and asynchronous
paralellization methods has the same memory load with three-level parallelization; however, it is
less efficient because it works in a completely synchronous mode on a single NUMA node.

After rendering for 30 min with the combination of synchronous and asynchronous paral-
lelization methods, an accuracy of 23.5% was achieved for an HUD system scene and accuracy
of 13.1% was achieved for a lens system scene, which is better than utilizing entirely synchro-
nous or asynchronous parallelization. The efficiency of ray processing is lower than that of com-
pletely asynchronous calculations because of the presence of the completely synchronously parts
of the algorithm, so the overall number of traced and processed rays is fewer than when utilizing
the fully asynchronous approach.

The three-level semi-synchronous parallelization method after 30 min achieved the accuracy
of 33% for a head-up display system scene and 11.7% for a lens system scene. The accuracy is
higher than other methods because of the semi-synchronous approach, which allowed for achiev-
ing the scalability of asynchronous calculation with a better rate of intersections between forward
rays and backward photon maps, which is specific to traditional synchronous calculations.

Tables 8 and 9 give the cumulative results of the achieved speedup and corresponding accu-
racies when utilizing all available computation cores for both of the test workstations.

The acquired results show the benefits of the designed three-level method, which are in the
linear scaling of the performance of ray processing and tracing with an increase in the work-
station’s number of active CPU cores. The amount of RAM used when synchronous and asyn-
chronous parallel computations are combined is a multiple of the number of NUMA nodes in the

Fig. 18 Ray-tracing speedup achieved when using the combination of synchronous and synchro-
nous and three-level semi-synchronous parallelization methods to rendering with backward
photon mapping applied to test scenes in comparison with traditional methods.

Table 8 Summary of the test results for the workstation with the single Intel Xeon CPU and uni-
form memory access with utilization of all 12 computation cores.

Parallelization
method

HUD system scene Lens system scene

Tracing
speedup

Achieved
accuracy (%)

Tracing
speedup

Achieved
accuracy (%)

Synchronous 7.0 31.1 3.5 19

Asynchronous 11.7 34.2 11.2 20.4

Two-level 11.9 30.1 12.0 15.6
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workstation. This, along with the fact that each synchronous group’s threads are bound to a
single NUMA node’s cores, eliminates the need to access the memory of other NUMA nodes,
except for the gathering of rendering results.

7 Conclusion

In the scope of the current study, the traditional parallel data processing methods for the back-
ward photon mapping method were implemented and examined. The drawbacks of using the
traditional synchronous and asynchronous parallel data processing approaches with backward
photon mapping algorithm, including the synchronous method’s poor scalability and the asyn-
chronous method’s excessive memory usage, were discussed. Their combination helped to mit-
igate their drawbacks, but the rendering scalability was still inferior to the straightforward
asynchronous parallelization approach.

On workstations with uniform memory access, the designed two-level semi-synchronous
backward photon mapping parallelization method showed good results, and ray-tracing speedup
almost linearly depended on the number of used computation cores. At the same time, the
memory usage was kept at the level comparable to the traditional synchronous parallelization
method.

On workstations with NUMA, the designed three-level semi-synchronous backward photon
mapping parallelization method showed promising results. It offered almost a linear scalability
of completely asynchronous calculations and memory usage that was a multiple of the number of
NUMA nodes. Due to the asynchronous nature of calculation on a third computation level, it
allowed for a straightforward integration of the distributed rendering by utilizing remote server
resources with little modification of an intermediate data fetching method.
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