Resolution enhancement of spatial light interference microscopy (SLIM) using deep learning
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INTRODUCTION METHODS RESULTS

One of the major challenges in the field of quantitative phase To estimate the experimental PSF for a particular objective The model predictions are shown In figure 4, where it can be
imaging (QPI) is boosting the resolution beyond the diffraction (40x/0.95 NA in this study), we acquired SLIM images of seen that the model can deconvolve the SLIM images and
jimit [1]. While being highly sensitive to axial changes in phase 100nm polystyrene beads. Using a MATLAB script, images of enhance the resolution of the raw SLIM image successfully.
2, 3], OPI images still suffer from blurring by the point spread single beads were cropped from whole field of view image. The model attained high metrics: SSIM 0.99. PSNR
function (PSF). Enhancing the resolution can be achieved These psf estimates were averaged to reduce noise and 51.0 and PCC 0.95 indicating that it can successfully
either through hardware by oblique or structured illumination apodised to avoid ringing artifacts. The whole psf extraction reproduce deconvolution results without explicit

[4-6] or through computation, using deconvolution algorithms procedure is shown In Fig. 2. knowledge of psf. This process is 100 times faster
and deep learning [7]. Apodization than conventional processing of 1000 images.
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