Fabio Villa, David Alesini, Maria Pia Anania, Marcello Artioli, Alberto Bacci, Marco Bellaveglia, Mariano Carpanese, Michele Castellano, Alessandro Cianchi, Franco Ciocci, Enrica Chiadroni, Giuseppe Dattoli, Domenico Di Giovenale, Emanuele Di Palma, Giampiero Di Pirro, Massimo Ferrario, Francesco Filippi, Alessandro Gallo, Giancarlo Gatti, Luca Giannessi, Anna Giribono, Luca Innocenti, Najmeh Sada Mirian, Andrea Mostacci, Alberto Petralia, Vittoria Petrillo, Riccardo Pompili, Julietta Rau, Stefano Romeo, Andrea Renato Rossi, Elio Sabia, Vladimir Shpakov, Ivan Spassovsky, Cristina Vaccarezza
We present the experimental evidence of the generation of coherent and statistically stable Free-Electron Laser (FEL) two color radiation obtained by seeding an electron double peaked beam in time and energy with a single peaked laser pulse. The FEL radiation presents two neat spectral lines, with time delay, frequency separation and relative intensity that can be accurately controlled. The analysis of the emission shows a temporal coherence and regularity in frequency significantly enhanced with respect to the Self Amplified Spontaneous Emission (SASE).
KEYWORDS: Free electron lasers, Magnetism, Electron beams, Physics, Optical simulations, Space operations, Polarization, Harmonic generation, Spectroscopy, Signal generators
A short period undulator (1.4 cm) has been designed for the SPARC-FEL test facility and has been realized in collaboration with KYMA Srl. It has been installed on the undulator line at SPARC. The undulator, operating in a delta like mode, has been used as radiator in a segmented configuration. The first stage being provided by the five undulators of the SPARC FEL source “old” chain, with period 2.8 cm. The KYMA undulator has a quatrefoil structure, a high magnetic field homogeneity and focuses both in vertical and radial directions. The two sections, namely the bunching and radiating parts, are arranged in such a way that the second is adjusted on a harmonic of the first. Laser action occurring in the second part, is due to the bunching acquired in the first. Simulations of the temporal and spectral profiles in different electron beam operating conditions are reported, as well as the evolution of the longitudinal phase space. The agreement with the experimental results is discussed The importance of this experiment is at least threefold: 1) It proves that the segmented undulator can successfully be operated 2) It proves that the laser emission in the last undulator is entirely due to the bunching mechanism, being no second harmonic signal present in the first segment 3) Encourages various improvements of the configuration itself, as e.g. the use of a further undulator with variable magnetic field configuration in order to obtain a laser field with adjustable polarization.
L. Poletto, G. Tondello, S. De Silvestri, M. Nisoli, G. Sansone, S. Stagira, P. Musumeci, M. Petrarca, M. Mattioli, M. Labat, O. Tcherbakoff, M. Bougeard, B. Carré, D. Garzella, G. Lambert, H. Merdji, P. Salières, M. Couprie, D. Alesini, M. Biagini, R. Boni, M. Castellano, A. Clozza, A. Drago, M. Ferrario, V. Fusco, A. Gallo, A. Ghigo, M. Migliorati, L. Palumbo, C. Sanelli, F. Sgamma, B. Spataro, S. Tomassini, C. Vaccarezza, C. Vicario, L. Serafini, S. Ambrogio, F. Ciocci, G. Dattoli, A. Doria, G. Gallerano, M. Germano, L. Giannessi, E. Giovenale, I. Spassovsky, M. Quattromini, A. Renieri, C. Ronsivalle, V. Surrenti, P. Ottaviani, S. Pagnutti, M. Rosetti, A. Dipace, E. Sabia
This communication describes the research work plan that is under implementation at the SPARC FEL facility in the
framework of the DS4 EUROFEL programme. The main goal of the collaboration is to study and test the amplification
and the FEL harmonic generation process of an input seed signal obtained as higher order harmonics generated both in
crystals (400 nm and 266 nm) and in gases (266 nm, 160 nm, 114 nm). The SPARC FEL can be con-figured to test
several cascaded FEL layouts that will be briefly analysed.
C. Vaccarezza, D. Alesini, M. Bellaveglia, S. Bertolucci, M. Biagini, R. Boni, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, D. Filippetto, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Migliorati, L. Palumbo, L. Pellegrino, M. Preger, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stella, F. Tazzioli, M. Vescovi, C. Vicario, F. Ciocci, G. Dattoli, A. Doria, F. Flora, G. Gallerano, L. Giannessi, E. Giovenale, G. Messina, P. Ottaviani, G. Parisi, L. Picardi, M. Quattromini, A. Renieri, C. Ronsivalle, S. Cialdi, C. Maroli, V. Petrillo, M. Romè, L. Serafini, L. Catani, E. Chiadroni, A. Cianchi, C. Schaerf, P. Musumeci, F. Alessandria, A. Bacci, F. Broggi, C. De Martinis, D. Giove, M. Mauri, L. Ficcadenti, M. Mattioli, A. Mostacci, P. Emma, S. Reiche, J. Rosenzweig
KEYWORDS: Magnetism, Free electron lasers, Electron beams, Particles, Stanford Linear Collider, Superconductors, Diagnostics, S band, Lanthanum, Energy efficiency
The SPARX project consists in an X-ray-FEL facility jointly supported by MIUR (Research Department of Italian
Government), Regione Lazio, CNR, ENEA, INFN and Rome University Tor Vergata. It is the natural extension of the
ongoing activities of the SPARC collaboration. The aim is the generation of electron beams characterized by ultra-high
peak brightness at the energy of 1 and 2 GeV, for the first and the second phase respectively. The beam is expected to
drive a single pass FEL experiment in the range of 13.5-6 nm and 6-1.5 nm, at 1 GeV and 2 GeV respectively, both in
SASE and SEEDED FEL configurations. A hybrid scheme of RF and magnetic compression will be adopted, based on
the expertise achieved at the SPARC high brightness photoinjector presently under commissioning at Frascati INFNLNF
Laboratories. The use of superconducting and exotic undulator sections will be also exploited. In this paper we
report the progress of the collaboration together with start to end simulation results based on a combined scheme of RF
compression techniques.
D. Alesini, S. Bertolucci, M. Biagini, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, M. Migliorati, A. Mostacci, L. Palumbo, L. Pellegrino, M. Preger, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario, F. Alessandria, A. Bacci, I. Boscolo, F. Broggi, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, M. Romè, L. Serafini, D. Levi, G. Medici, M. Mattioli, P. Musumeci, L. Catani, E. Chiadroni, D. Moricciani, F. Ciocci, G. Dattoli, A. Doria, F. Flora, G. Gallerano, L. Giannessi, E. Giovenale, G. Messina, L. Mezi, P. Ottaviani, L. Picardi, M. Quattromini, A. Renieri, C. Ronsivalle, A. Cianchi, C. Schaerf, J. Rosenzweig
SPARC and SPARX are two different initiatives toward an X-ray FEL SASE source at LNF. SPARC is a high gain FEL
project devoted to provide a source of visible and VUV radiation while exploiting SASE mechanism. An advanced
Photo-Injector system, emittance self-compensating RF-gun plus a 150 MeV Linac, will inject a high quality e-beam into
the undulator to generate high brilliance FEL radiation in the visible region at the fundamental wavelength, (530 nm).
The production of flat top drive laser beams, high peak current bunches, and an emittance compensation scheme will be
investigated together with the generation of higher harmonic radiation in the VUV region. SPARX is the direct evolution
of such a high gain SASE FEL towards the 13.5 and 1.5 nm operating wavelengths, at 2.5 GeV. The first phase of the
SPARX project, fiinded by Government Agencies, will be focused on R&D activity on critical components and
techniques for future X-ray facilities as described in this paper.
KEYWORDS: Electron beams, Free electron lasers, Harmonic generation, Medium wave, Light sources, Information operations, X-rays, Amplifiers, Magnetism, Optical simulations
The mechanism of nonlinear harmonic generation in the exponential gain regime, which is driven by bunching at the fundamental wavelength, may provide a path toward both enhancing and extending the usefulness of an x-ray free- electron laser (FEL) facility. Related exotic generation schemes, which exploit properties of harmonic production in various undulator topologies, have been discussed both in the past and more recently. Using three different numerical simulation codes, we explore the possible utility of such schemes (e.g., harmonic afterburners and biharmonic undulators) at future light source facilities.
We report the first operation of a compact free-electron laser at wavelengths in the range between 2 and 2.6 mm with ouput power up to 1 kW in 4 us pulses. The innovative characteristics of this device, driven by a 2.3 MeV microtron, is its considerable small size, obtained by using a short undulator with 8 periods of 2.5 cm.
Franco Ciocci, R. Bartolini, Giuseppe Dattoli, A. Dipace, Andrea Doria, Gian Gallerano, Maurice Kimmitt, Giovanni Messina, Alberto Renieri, E. Sabia, John Walsh
A 5 MeV FEL facility has been realized at the ENEA Research Center in Frascati, Italy. This facility is devoted to the testing of Cerenkov FEL devices and other compact FEL configurations. Power up to 50 W in 4 microsecond(s) pulse has been generated in a Cerenkov FEL at wavelengths ranging from 0.8 to 1.6 mm using different dielectric guides. Other planned activities include the testing of short-period undulators in a small size waveguide FEL designed to operate in the sub-millimeter region. Operating characteristics and predicted performance are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.