Adaptive Optics (AO) based on artificial beacons is the key to achieve high resolution images from large ground-based telescopes. Long pulsed lasers are preferable to create sodium laser guide stars (LGS) as they allow for Rayleigh blanking. However, these lasers may increase the effective light intensity irradiated at the sodium layer, which may lead to transition saturation, and then decline the normalized return flux efficiency. The return flux might be boosted by optical repumping, which could make full use of the advantages of optical pumping without trapping the atoms to the F=1 ground state. In this paper, we study the optical repumping effect by using a small scale long pulsed sodium laser developed in Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences, whose pulse format may be pretty suitable for large telescopes. An electro-optic phase modulator is used to produce 1.713 GHz sidebands from the D2a center wavelength with the fraction of 20%. As for a vacuum sodium cell at the temperature of 40°C, when the effective laser intensity increases from 4.53×102 W/m2 to 6.99×105 W/ m2, resonant fluorescence with and without repumping is measured. The result illustrates that the resonant scattering brightness with repumping can be as over 3 times as without it when the light intensity changes between 4.53×102 W/m2 to 5 ×104 W/ m2. The saturated phenomenon is also observed. This gives direct evidence that repumping could improve the performance of sodium laser guide stars based on TIPC long pulsed lasers. To our knowledge, this is the first experimental demonstration of the repumping effect with the TIPC type long pulsed laser in laboratory.
Recent years, benefited from their greater coverage and smaller focus anisoplanatism, sodium laser guide stars are
becoming more attractive in providing artificial beacons for adaptive optical (AO) system in large ground telescopes
compared to Rayleigh guide stars. And it had been found that the Sodium laser guide stars backward fluorescence
intensity is closely related with the local magnetic field intensity and direction. In this paper, we make use of the World
Magnetic Model (WMM) 2010 and by considering the geographical differences in Beijing, Nanjing and Kunming we
investigate the effects of the light intensity, line-width, polarization of the CW laser and re-pumping conditions on the
photon return flux by numerically solving the Rochester et al. Bloch model. So in theory we can get better Sodium guide
star in Beijing. In conclusion, according to the simulation results, we can acquire much bright of Sodium guide stars by
optimize the parameter of the launched 589 nm laser.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.