Processing additives are widely used to increase the efficiency of solution processed organic solar cells. We use the Hansen solubility parameters (HSPs) to investigate novel processing additives. The HSPs predict pyrrolidinone derivatives to be efficient processing additives for OSC systems based on poly(3-hexylthiophene)/[6,6]-phenyl-C61- butyric acid methyl ester (P3HT/PCBM). Two pyrrolidinone derivatives are identified: 1-methyl-2-pyrrolidinone and 1- benzyl-2-pyrrolidinone. The processing additives are introduced with various concentrations in the formulation of P3HT and PCBM solution. The electrical characterizations show that the two processing additives significantly increase the short circuit current and thus the power conversion efficiency of the OSCs. The results thus highlight HSPs as an effective and relatively straightforward tool that can be employed to optimize OSC morphology from a theoretical standpoint. Such a tool will be invaluable for identifying additives for novel high efficiency polymer species as they are synthesized, and thus to streamline the device fabrication and device optimization process.
Polymeric bulk heterojunction (BHJ) organic solar cells represent one of the most promising technologies for renewable energy with a low fabrication cost. Control over BHJ morphology is one of the key factors in obtaining high-efficiency devices. This review focuses on formulation strategies for optimizing the BHJ morphology. We address how solvent choice and the introduction of processing additives affect the morphology. We also review a number of recent studies concerning prediction methods that utilize the Hansen solubility parameters to develop efficient solvent systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.