The wavefront aberrations induced by misalignments due to decentration and tilt of an optical component in an optical measurement system are presented. A Shack–Hartmann wavefront sensor is used to measure various aberrations caused due to the shifting of the axis and tilt of a lens in the path of an optical wavefront. One of the lenses in an optical system is decentered in the transverse direction and is tilted by using a rotational stage. For each step, wavefront data have been taken and data were analyzed up to the fourth order consisting of 14 Zernike terms along with peak-to-valley and root mean square values. Theoretical simulations using ray tracing have been carried out and compared with experimental values. The results are presented along with the discussion on tolerance limits for both decentration and tilt.
One of the important aspects of SPIE is “Community Support and Outreach Education”, which should raise awareness and interest in optics and photonics among the targeted communities and school children. Hence as part of SPIE IIT Madras student chapter, we carried out SPIE SOAP, a ‘School Outreach Activity Program’. Two types of schools were identified, one a high socio-economic status school and the other a low socio-economic status school having a majority of poor children. Optics related scientific experiments were demonstrated in these schools followed by oral quiz session to the students to assess the level of their knowledge before and after the experiments. We also clubbed this activity with “Vision Screening” and distribution of free spectacles for those children who live below poverty line. Out of the 415 children screened, 60.84% eyes were having normal vision, while 39.16% were found to have refractive errors (Myopia 35.78% and Hyperopia 3.38%) where some of them could not even read the board. Treatable eye diseases were also found in 0.72% of the children. The entire activity is been discussed and documented in this paper.
Alignment of optical components is one of the important requirements in any optical system. Decentration of a component, like a lens, in the path of the beam, would introduce aberrations of various types. This would affect the measurement accuracy in the optical system such as an interferometer. In this work, we have analyzed the influence of decentration of an optical component on the wavefront in an optical system. The various aberrations caused due to the shifting of the axis of a lens in the path of an optical wavefront have been measured using a Shack Hartmann Wavefront Sensor and their influence studied. One of the lenses in the optical system is moved or decentered in transverse direction by 500 μm in steps of 50 μm. Decentration was done for all four quadrants. For each step, wavefront data is been taken and data was analyzed. Defocus, horizontal coma, vertical coma and spherical aberration were analyzed, apart from peak-to-valley and RMS values. Results showed that the error introduced is minimal up to 300 μm decentration, above which the aberrations were quite large. The experimental results and analyses are presented.
simple and new technique for detection of ‘Preferred Retinal Locus’ (PRL) in human eye is proposed in this paper.
Simple MATLAB algorithms for estimating RGB pixel intensity values of retinal images were used. The technique
proved non-existence of ‘S’ cones in Fovea Centralis and also proposes that rods are involved in blue color perception.
Retinal images of central vision loss and normal retina were taken for image processing. Blue minimum, Red maximum
and Red+Green maximum were the three methods used in detecting PRL. Comparative analyses were also performed for
these methods with patient’s age and visual acuity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.