Incomplete excision of cancerous tissue is a major issue in breast-conserving surgery, with up to 30% of cases requiring re-excision. In vivo quantitative micro-elastography (QME) using a hand-held probe is a promising path towards improved intraoperative margin assessment, potentially improving removal of cancerous tissue during the initial procedure. QME is an OCE technique that requires a modified 3D OCT scan in which each lateral position is acquired in two states, differing by a small compressive axial deformation. Analysis of the axial strain between the two states generates a 3D micro-elastogram that facilitates identification of cancerous tissue.
Compressive deformation is typically provided by a piezoelectric actuator. However, this approach presents significant disadvantages for hand-held scanning, most notably: the relatively large size of the actuator; high driving voltages; and the difficulty of hermetically sealing and sterilizing moving parts. Alternatively, deformation may be provided by manual compression, avoiding many of the issues associated with piezoelectric actuation. This approach has yet to be demonstrated in 3D, limiting its utility in surgical applications.
Here, we present hand-held 3D QME using a manual compression technique. Our technique requires the user to apply a steadily varying pressure to the tissue in order to generate 3D micro-elastograms. We describe the signal processing developed to enable this approach and present results from both structured phantoms and freshly excised human breast tissue, validated by histology. Furthermore, we analyze repeatability by presenting results from multiple users and benchmark our technique against the piezoelectric-actuated approach.
|