Presentation
10 September 2019 Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn (Conference Presentation)
Author Affiliations +
Abstract
Spin-orbit torque (SOT) offers promising approaches to developing energy-efficient memory devices by electric switching of magnetization. Comparing to other SOT materials such as heavy metal and topological insulator, metallic antiferromagnet (AFM) potentially influences the generation of SOT through its magnetic structure. Here, combining the results from neutron diffraction and spin-torque ferromagnetic resonance experiments, we show that the room-temperature magnetic structure of epitaxially grown L10-IrMn (a collinear AFM) is distinct from the widely presumed bulk one. It consists of two types of domains with the spin axes orienting towards [111] and [-111], respectively. We find that this unconventional magnetic structure is responsible for a much larger SOT efficiency up to 0.60±0.04, comparing to 0.083±0.002 for the polycrystalline face-centered-cubic IrMn. Furthermore, we reveal that the magnetic structure of L10-IrMn induces a large isotropic bulk contribution to the SOT efficiency and an anisotropic interfacial contribution of comparable magnitude, where the latter depends strongly on the electric current direction in the film plane. Our findings shed light on the critical roles of bulk and interfacial antiferromagnetism to SOT generated by metallic AFM.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jingsheng Chen "Large spin-orbit torque efficiency enhanced by magnetic structure of collinear antiferromagnet IrMn (Conference Presentation)", Proc. SPIE 11090, Spintronics XII, 110900D (10 September 2019); https://doi.org/10.1117/12.2529947
Advertisement
Advertisement
KEYWORDS
Magnetism

Atomic force microscopy

Diffraction

Ferromagnetics

Metals

Switching

Back to Top