Paper
28 February 2021 Design and research of ultra-low loss terahertz photonic crystal fiber
Author Affiliations +
Proceedings Volume 11781, 4th Optics Young Scientist Summit (OYSS 2020); 117811A (2021) https://doi.org/10.1117/12.2591152
Event: Optics Frontier: Optics Young Scientist Summit, 2020, Ningbo, China
Abstract
A photonic crystal fiber (PCF) consisting entirely of circular air holes based on hexagonal cladding and cross-shaped core structure is proposed. The transmission properties of the proposed PCF are simulated calculation by using TOPAS as the background material, the finite element method as the calculation method, and the circular perfectly matched layer (PML) as the boundary condition. The results show that very low transmission loss, including effective material loss (EML) with 1.04 × 10-3 cm-1 , the confinement loss with 2.3 × 10-6 dB/cm, and the bending loss (when the bending radius is 1 cm) with 1.23 × 10-17 cm-1 can be got. When the proposed PCF under the optimal condition, extremely large effective area about 9.69 × 1016 μm2 and flat dispersion about 0.46 ± 0.04 ps/THz/cm can be obtained, and the proposed PCF is in the single mode. Large effective area and ultra-low loss make the proposed PCF hold great future in low loss terahertz systems. Additionally, the proposed PCF with simple structure can be drawn by many methods such as the extrusion method.
© (2021) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Yanan Wang and Guangyu Jiang "Design and research of ultra-low loss terahertz photonic crystal fiber", Proc. SPIE 11781, 4th Optics Young Scientist Summit (OYSS 2020), 117811A (28 February 2021); https://doi.org/10.1117/12.2591152
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
Back to Top