Paper
6 June 1997 New amplified piezoelectric actuator for precision positioning and active damping
Ronan Le Letty, Frank Claeyssen, Nicolas Lhermet, Philippe Bouchilloux
Author Affiliations +
Abstract
Two typical characteristics of direct piezoelectric actuators are displacements of ten micrometers and high stiffnesses. Recently, multilayer actuators have been improved, and they now display strains of approximately 1200 ppm at low excitation levels (less than two hundred volts). Thus, they are well suited to perform precise positioning of optical devices. But for industrial needs, this performance is still insufficient for positioning devices with larger displacements (in the range of several hundred micrometers). Numerous designs of mechanical amplifier devices based on the use of flexural hinges have been proposed. Due to their low stiffness, these devices cannot be used in space applications because they would not survive during takeoff. The amplified piezoelectric actuator which we designed and tested, eliminated the low stiffness drawback and ensures good force transmission. Due to the stiffness of the amplifier, the efficiency of the electromechanical transduction is significantly higher than those of conventional amplifier mechanisms. To design this actuator, we performed a numerical finite element simulation that included the piezoelectric effect. Among other things, this model shows the displacement as a function of the excitation and the electrical admittance. The static and the dynamic behaviors were determined. The main features of the actuator are a no-load displacement of 180 micrometers and stiffness of 5 N/m. These characteristics were experimentally verified using an electromechanical test bench including a laser Doppler interferometer, thus confirming the design method. Technological aspects, like the compressive force applied to the piezoelectric material, were considered. Many applications for this amplified actuator already exist. For example, an active mechanism using this actuator can be used to tilt a mirror. Another application of the amplified actuator is in the field of active damping of structures. In this case, the actuator is connected to a resistive shunt so that electrical damping is obtained through the direct piezoelectric effect. The experimental results show that the actuator is interesting because of its high electromechanical coupling, and, consequently, its ability to perform active damping.
© (1997) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Ronan Le Letty, Frank Claeyssen, Nicolas Lhermet, and Philippe Bouchilloux "New amplified piezoelectric actuator for precision positioning and active damping", Proc. SPIE 3041, Smart Structures and Materials 1997: Smart Structures and Integrated Systems, (6 June 1997); https://doi.org/10.1117/12.275673
Lens.org Logo
CITATIONS
Cited by 21 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Actuators

Electromechanical design

Amplifiers

Piezoelectric effects

Interferometers

Optical amplifiers

Resistors

Back to Top