Paper
8 July 2002 High-speed optical wireless connectivity: design challenges and performance evaluation
Vikas Kukshya, Hossein Izadpanah
Author Affiliations +
Proceedings Volume 4872, Optical Transmission Systems and Equipment for WDM Networking; (2002) https://doi.org/10.1117/12.475136
Event: ITCom 2002: The Convergence of Information Technologies and Communications, 2002, Boston, MA, United States
Abstract
The paper proposes free-space optics (FSO) as one of the potential solutions for the design and development of next generation, high-capacity, high-speed wireless networks. The hybrid wireless architecture is introduced and the role of FSO in the proposed architecture is highlighted. The significance of the hybrid architecture in achieving ubiquitous, carrier-grade wireless connectivity is also explained. The paper presents various FSO network design challenges and potential solutions for real-time FSO link performance characterization as well as dynamic FSO link adaptability for enhanced performance during adverse operating conditions. Dynamic power control and dynamic data rate control schemes are evaluated for FSO link adaptability. Dynamic load switching (DLS) scheme for hybrid architecture functionality during extreme conditions is also evaluated. Finally, the paper describes an elaborate field test-bed based on hybrid architecture, and various dynamic FSO link adaptation techniques implemented in to the test-bed. The performance of these dynamic link adaptation schemes and DLS functionality is presented to quantify the improvement in overall hybrid architecture performance. The results, recorded from the experiments during extreme weather conditions, validate the hybrid architecture concept and conclusively prove the reliability of the architecture in achieving sustained high-speed connectivity.
© (2002) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Vikas Kukshya and Hossein Izadpanah "High-speed optical wireless connectivity: design challenges and performance evaluation", Proc. SPIE 4872, Optical Transmission Systems and Equipment for WDM Networking, (8 July 2002); https://doi.org/10.1117/12.475136
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Optical design

Transmittance

Wavelength division multiplexing

Back to Top