Paper
17 January 2003 Microfabrication of controlled angle diffusers used for resolution enhancement in microlithography
Author Affiliations +
Proceedings Volume 4984, Micromachining Technology for Micro-Optics and Nano-Optics; (2003) https://doi.org/10.1117/12.477845
Event: Micromachining and Microfabrication, 2003, San Jose, CA, United States
Abstract
As CDs continue to shrink, lithographers are moving towards using off-axis illumination while continuing to decrease the operating wavelength to improve their CD budget. Currently DUV lithography at 248nm and 193nm are driving the ability of the foundries and IDM’s to meet or exceed the SIA roadmap for semiconductor chip performance. In time, however, the industry will migrate to the even shorter wavelengths of 157nm and 13nm. To meet today’s needs with 248nm and 193nm requires the use of Resolution Enhancement Techniques such as Optical Proximity Correction, Phase Shift Mask, and Off Axis Illumination. The need for these techniques will be only slightly reduced as the industry migrates to 157nm in several years. Off-axis illumination (the topic of this paper) has been shown to significantly increase the lithographic process window and there have been several papers over the last few years describing various illumination profiles designed for application specific optimization. These include various annular and quadrupole illumination schemes including weak quadrupole, CQUEST, and Quasar Diffractive optics, if incorporated into the design of the illumination system, can be used to create arbitrary illumination profiles without the associated light loss, thus maintaining throughput while optimizing system performance. We report on the design and fabrication of such devices for use with KrF, ArF, and F2 scanners.
© (2003) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Marc D. Himel, Menelaos K. Poutous, Jared D. Stack, and Jerry L. Leonard "Microfabrication of controlled angle diffusers used for resolution enhancement in microlithography", Proc. SPIE 4984, Micromachining Technology for Micro-Optics and Nano-Optics, (17 January 2003); https://doi.org/10.1117/12.477845
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Diffusers

Lithographic illumination

Photomasks

Photoresist materials

Calcium

Lithography

Resolution enhancement technologies

Back to Top