Paper
20 September 2004 Laser doping for microelectronics and microtechnology
Thierry Sarnet, Gurwan Kerrien, Nourdin Yaakoubi, Alain Bosseboeuf, Elisabeth Dufour-Gergam, Dominique Debarre, Jacques Boulmer, Kuniyuki Kakushima, Cyrille Laviron, Miguel Hernandez, Julien Venturini, Tarik Bourouina
Author Affiliations +
Abstract
The future CMOS generations for microelectronics will require advanced doping techniques capable to realize ultra-shallow, highly-doped junctions with abrupt profiles. Recent experiments have shown the potential capabilities of laser processing of Ultra Shallow Junctions (USJ). According to the International Technology Roadmap for Semiconductors, two laser processes are able to reach ultimate predictions: laser thermal processing or annealing (LTP or LTA) and Gas Immersion Laser Doping (GILD). Both processes are based on rapid melting/solidification of the substrate. During solidification, the liquid silicon, which contains the dopants, is formed epitaxially from the underlying crystalline silicon. In the case of laser thermal annealing dopants are implanted before laser processing. GILD skips the ion-implantation step: in this case dopants are chemisorbed on the Si surface before the laser shot. The dopants are then incorporated and activated during the laser process. Activation is limited to the liquid layer and this chemisorption/laser shot cycle can be repeated until the desired concentration is reached. In this paper, we investigate the possibilities and limitations of the GILD technique for two different substrates: silicon bulk and SOI. We also show some laser doping applications for the fabrication of micro and nanoresonators, widely used in the MEMS Industry.
© (2004) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Thierry Sarnet, Gurwan Kerrien, Nourdin Yaakoubi, Alain Bosseboeuf, Elisabeth Dufour-Gergam, Dominique Debarre, Jacques Boulmer, Kuniyuki Kakushima, Cyrille Laviron, Miguel Hernandez, Julien Venturini, and Tarik Bourouina "Laser doping for microelectronics and microtechnology", Proc. SPIE 5448, High-Power Laser Ablation V, (20 September 2004); https://doi.org/10.1117/12.547759
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Silicon

Bridges

Laser processing

Boron

Doping

Annealing

Laser applications

Back to Top