Paper
14 April 2005 Microwave soft tissue ablation (Invited Paper)
Author Affiliations +
Abstract
Microsulis, in conjunction with the University of Bath have developed a set of novel microwave applicators for the ablation of soft tissues. These interstitial applicators have been designed for use in open surgical, laparoscopic and percutaneous settings and range in diameter from 2.4 to 7 mm. A 20 mm diameter flat faced interface applicator was developed as an adjunct to the open surgical interstitial applicator and has been applied to the treatment of surface breaking lesions in hepatobiliary surgery. Taken as a complete tool set the applicators are capable of treating a wide range of conditions in a safe and efficacious manner. The modality employs a radiated electromagnetic field at the allocated medical frequency of 2.45 GHz and powers between 30 and 150 Watts. Computer simulations, bench testing, safety and efficacy testing, ex-vivo and in-vivo work plus clinical trials have demonstrated that these systems are capable of generating large volumes of ablation in short times with favourable ablation geometries. Clinical studies have shown very low complication rates with minimal local recurrence. It is considered that this modality offers major advantages over currently marketed products. The technique is considered to be particularly safe as it is quick and there is no passage of current obviating the requirement for grounding pads. Since the microwave field operates primarily on water and all soft tissues with the exception of fat are made up of approximately 70% water the heating pattern is highly predictable making repeatability a key factor for this modality.
© (2005) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Peter J. Clegg and Nigel J. Cronin "Microwave soft tissue ablation (Invited Paper)", Proc. SPIE 5698, Thermal Treatment of Tissue: Energy Delivery and Assessment III, (14 April 2005); https://doi.org/10.1117/12.596893
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Microwave radiation

Tissues

Liver

Radiofrequency ablation

Dielectrics

Electromagnetism

Surgery

Back to Top