Paper
24 March 2006 Debris mitigation for EUV sources using directional gas flows
Wouter Soer, Dion Klunder, Maarten van Herpen, Leon Bakker, Vadim Banine
Author Affiliations +
Abstract
Practical EUV sources not only generate the desired EUV radiation at a wavelength of 13.5 nm but also produce debris that severely limits the lifetime of the collecting optics in the lithographic system. In this paper, we address the possibility of reducing the exposure of the collecting optics to debris by using directional gas flows, focusing particularly on mitigation of ballistic microparticles. The purpose of the gas flow is to change the direction of the particles such that they can subsequently be captured by a foil trap. Two types of gas flows are considered: (i) longitudinal gas flows, i.e. with a flow direction essentially parallel to the velocity of the microparticles, and (ii) transversal gas flows, having a flow direction essentially perpendicular to that of the microparticles. We have conducted contamination experiments using both types of flows in Xe- and Sn-based experimental EUV sources with Ar gas. The experiments show that directional gas flows suppress microparticles in the same way a buffer gas does unless the flow velocity becomes of the same order as the thermal velocity of the gas (~ 102 m/s). A high-speed longitudinal gas flow is expected to be more efficient in thermalizing the microparticles than a stationary buffer gas; this could however not be confirmed due to experimental constraints. Our experiments with a high-speed transversal gas flow show that submicron debris particles can successfully be suppressed by one order of magnitude. A transversal gas flow combined with a suitable foil trap structure may thus present an effective method for mitigation of microparticles.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Wouter Soer, Dion Klunder, Maarten van Herpen, Leon Bakker, and Vadim Banine "Debris mitigation for EUV sources using directional gas flows", Proc. SPIE 6151, Emerging Lithographic Technologies X, 61514B (24 March 2006); https://doi.org/10.1117/12.682357
Lens.org Logo
CITATIONS
Cited by 3 scholarly publications and 1 patent.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Particles

Extreme ultraviolet

Contamination

Argon

Extreme ultraviolet lithography

Tin

Lithography

Back to Top