Paper
2 May 2006 Performance analysis of fuzzy logic particle filter compared to fuzzy IMM in tracking high-performance targets
Author Affiliations +
Abstract
A high-performance target may accelerate at non-uniform rates, complete sharp turns within short time periods, thrust, roll, and pitch; which may not follow a linear model. Even though the interacting multiple model (IMM) can be considered as a multimodal approach, it still requires prior knowledge about the target model. To overcome this weakness, a fuzzy logic particle filter (FLPF) is used. It is comprised of single-input single-output; which is presented by fuzzy relational equations. A canonical-rule based form is used to express each of these fuzzy relational equations. The dynamics of the high-performance target are modeled by multiple switching (jump Markov) systems. The target may follow one-out of-seven dynamic behavior model at any time in the observation period under assumption of coordinate turn model. The FLPF has the advantage that it does not require any prior knowledge of statistical models of process as in IMM. Moreover, it does not need any maneuver detector even when tracking a high performance target; which results in less computational complexities. By using an appropriate fuzzy overlap set, only a subset of the total number of models need to be evaluated, and these will be conditioned on acceleration values close to the estimate. This reduces the computational load compared to the fuzzy IMM (FIMM) algorithm. To achieve the whole range of maneuver variables, more models can be added without increasing the computational load as the number of models evaluated is determined only by the overlap. An example is included for visualizing the effectiveness of the proposed algorithm. Simulation results showed that the FLPF has good tracking performance and less computational load compared to the FIMM when applied to systems characterized by large scan periods.
© (2006) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Hazem Kamel and Wael Badawy "Performance analysis of fuzzy logic particle filter compared to fuzzy IMM in tracking high-performance targets", Proc. SPIE 6238, Acquisition, Tracking, and Pointing XX, 62380H (2 May 2006); https://doi.org/10.1117/12.664688
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Fuzzy logic

Motion models

Detection and tracking algorithms

Particle filters

Fuzzy systems

Mathematical modeling

Process modeling

RELATED CONTENT


Back to Top