Paper
20 February 2008 The vascular response observation by the monitoring of the photosensitizer, oxygen, and blood flow during the high intensity pulsed excitation photodynamic therapy 1h after water-soluble photosensitizer intravenous injection
Author Affiliations +
Abstract
We investigated the correlation between the therapeutic effect by early irradiation Photodynamic Therapy (PDT) and vascular response. The early irradiation PDT has been proposed by our group. This PDT protocol is that pulse laser irradiates to tumors 1 h after intravenous injection of water-soluble photosensitizer. The intact layer appeared over the well treated layer, when the early irradiation PDT was performed at rat prostate subcutaneous tumors with high intensity pulse laser (over 1 MW/cm2 in peak intensity) and Talaporfin sodium. In order to clarify the phenomenon mechanism, we monitored blood volume, surface temperature, photosensitizer amount, and oxygen saturation during the PDT. The rat prostate subcutaneous tumor was irradiated with excimer dye laser light at 1 h after the intravenous injection. The photosensitizer dose wa 2.0 mg/kg, and the pulse energy density was 2.5 mJ/cm2 (low intensity) or 10 mJ/cm2 (high intensity). Under the low intensity pulsed PDT, the fluorescence amount was decreasing gently during the irradiation, and the blood volume and oxygen saturation started decreasing just after the irradiation. Under the hgh intensity pulsed PDT, the fluorescence amount was decreaased rapidly for 20 s after the irradiation started. The blood volume and oxygen saturation were temporally decreased during the irradiation, and recovered at 48 hrs after the irradiation. According to these results, under the low intensity pulsed PDT, the blood vessel located near the surface started closing just after the irradiation. On the other hand, under the high intensity pulsed PDT the blood vessel was closing for 20 s after the irradiation started, moreover, the blood flow recovered at 48 hrs after the irradiation. We concluded that the vascular response depended on the pulse energy density, and then the therapeutic effect was attributed to the difference of the vascular response. In other words, the surface intact layer could be considered to be induced the temporal drug and oxygen depletion effect associated with the temporal vascular shutdown.
© (2008) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
S. Hakomori, H. Matsuo, and T. Arai "The vascular response observation by the monitoring of the photosensitizer, oxygen, and blood flow during the high intensity pulsed excitation photodynamic therapy 1h after water-soluble photosensitizer intravenous injection", Proc. SPIE 6854, Optical Interactions with Tissue and Cells XIX, 68540Q (20 February 2008); https://doi.org/10.1117/12.762057
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Photodynamic therapy

Oxygen

Blood

Blood circulation

Dye lasers

Excimers

Luminescence

Back to Top