Paper
28 April 2011 On a novel self-regulating shape memory polymer composite
Fei Gao, Seyul Son, Kyungmook Park, David Biggs, Courtney Andrews, Eric M. Mockensturm, Nakhiah C. Goulbourne
Author Affiliations +
Abstract
Polyurethane shape memory polymers (PU-SMPs) are active materials that can be transformed into complex shapes with the ability to recover their original shape even after undergoing large deformations. Because of their light weight, large recoverability, low cost, and high compliance, SMPs can be potentially employed as actuators, MEMS devices, temperature sensors, and damping elements to name a few. One of the key challenges in implementing SMPs is the response time which is limited by the method of heating and cooling and the material. Unlike shape memory alloys, SMPs can be activated by multiple stimuli including lasers, resistive heating, electric fields, and magnetic fields. While these methods may provide an efficient way of heating the SMP, they rely on the slow process of passive conduction for cooling. In this paper, a self regulating SMP (SR-SMP) composite is introduced, whereby a novel heating and cooling system consisting of embedded silica capillary tubes in the SMP (DiAPLEX® MP4510: SMP Technologies, Inc.) has been developed. The tubes are used to pump hot/cold fluid through the SMP membrane and hence provide a local temperature source. In order to show the effectiveness and efficiency of the mechanism, the thermomechanical response of the SR-SMP is compared experimentally to a SMP with "conventional" i.e. global heating and cooling mechanisms. It is shown that the SR-SMP has a faster thermomechanical response. It has been demonstrated previously that soft SMPs can be controlled by an electric field while in the rubbery phase, thus taking advantage of the Maxwell stress or electrostatic stress effect. Thermomechanical characterization of PU-SMPs is described for different weight percentages of resin (Diphenylmethane-4, 4'-diisocyanate) and hardener (1,4-Butanediol). Varying the percent hardener reduced the effective cross-link density of the polymer and hence the thermomechanical properties. The electromechanical response of pure SMP and SR-SMP is predicted numerically. The numerical computation indicates that the softer SMPs (resin:hardener = 5:4, 8:7, and 9:8) could be used as electroactive polymers.
© (2011) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Fei Gao, Seyul Son, Kyungmook Park, David Biggs, Courtney Andrews, Eric M. Mockensturm, and Nakhiah C. Goulbourne "On a novel self-regulating shape memory polymer composite", Proc. SPIE 7978, Behavior and Mechanics of Multifunctional Materials and Composites 2011, 797816 (28 April 2011); https://doi.org/10.1117/12.881930
Lens.org Logo
CITATIONS
Cited by 2 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Silica

Capillaries

Composites

Glasses

Digital image correlation

Polymers

Shape memory polymers

Back to Top