Paper
11 March 2015 Plasmonic cell manipulation for biomedical and screening applications
Dag Heinemann, Markus Schomaker, Stefan Kalies, Merve Sinram, Patrick Heeger, Hugo Murua Escobar, Heiko Meyer, Tammo Ripken
Author Affiliations +
Proceedings Volume 9340, Plasmonics in Biology and Medicine XII; 93400Q (2015) https://doi.org/10.1117/12.2077604
Event: SPIE BiOS, 2015, San Francisco, California, United States
Abstract
Modulation of the cell membrane permeability by the plasmonic interaction of gold nanoparticles and short laser pulses for cell manipulation or destruction has been the objective of several recent studies. Gold nanoparticles in close vicinity to the cellular membrane are irradiated to evoke a nanoscale membrane perforation, enabling extracellular molecules to enter the cell. However, besides several basic studies no real translation from proof of concept experiments to routine usage of this approach was achieved so far.

In order to provide a reproducible and easy-to-use platform for gold nanoparticle mediated (GNOME) laser manipulation, we established an automated and encased laser setup. We demonstrate its feasibility for high-throughput cell manipulation. In particular, protein delivery into canine cancer cells is shown. The biofunctional modification of cells was investigated using the caspase 3 protein, which represents a central effector molecule in the apoptotic signaling cascade. An efficient and temporally well-defined induction of apoptosis was observed with an early onset 2 h after protein delivery by GNOME laser manipulation. Besides protein delivery, modulation of gene function using GNOME laser transfection of antisense molecules was demonstrated, showing the potential of this technique for basic science and screening purposes.

Concluding, we established GNOME laser manipulation of cells as a routine method, which can be utilized reliably for the efficient delivery of biomolecules. Its intrinsic features, being low impairment of the cell viability, high delivery efficiency and universal applicability, render this method well suited for a large variety of biomedical application.
© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Dag Heinemann, Markus Schomaker, Stefan Kalies, Merve Sinram, Patrick Heeger, Hugo Murua Escobar, Heiko Meyer, and Tammo Ripken "Plasmonic cell manipulation for biomedical and screening applications", Proc. SPIE 9340, Plasmonics in Biology and Medicine XII, 93400Q (11 March 2015); https://doi.org/10.1117/12.2077604
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Proteins

Cell death

Gold

Molecules

Nanoparticles

Biomedical optics

Plasmonics

Back to Top