Today’s quantum technology relies on the realization of large-scale non-classical systems in practical formats to enable quantum-accelerated computing, secure communications and enhanced sensing. Optical on-chip quantum frequency combs, characterized by many equidistantly spaced frequency modes, allow the storage of large amounts of quantum information and together with control mechanisms can provide practical large-scale quantum systems. In this contribution, we present recent advances on the controlled generation and use of quantum frequency combs for information processing. First, we demonstrate an electrically-pumped laser-integrated quantum light source of two- and high-dimensional maximally entangled photons. We exploit a hybrid InP-SiN approach which allows to include a filter, a gain section and a parametric photon pair source in a single system. Second, we demonstrate the generation of high-dimensional bi-photon quantum frequency combs with tunable entropies by exploiting a novel excitation technique and spectral filtering. Using this, we reveal unidirectional bosonic quantum walks, asymmetric energy transfer, and directional entanglement transport.
|