Open Access
29 June 2021 Optical calibration and first light for the deformable mirror demonstration mission CubeSat (DeMi)
Author Affiliations +
Abstract

Microelectromechanical systems (MEMS) deformable mirrors (DMs) can provide high-precision wavefront control with a small form-factor, low power device. This makes them a key technology option for future space telescopes requiring adaptive optics for high-contrast imaging of exoplanets with a coronagraph instrument. The Deformable Mirror Demonstration Mission (DeMi) CubeSat payload is a miniature space telescope designed to demonstrate MEMS DM technology in space for the first time. The DeMi payload contains a 50-mm primary mirror, an internal calibration laser source, a 140-actuator MEMS DM from Boston Micromachines Corporation, an image plane wavefront sensor, and a Shack–Hartmann wavefront sensor (SHWFS). The key DeMi payload requirements are to measure individual actuator wavefront displacement contributions to a precision of 12 nm and correct both static and dynamic wavefront errors in space to less than 100-nm RMS error. The DeMi mission will raise the technology readiness level of MEMS DM technology from a five to at least a seven for future space telescope applications. We summarize the DeMi optical payload design, calibration, optical diffraction model, alignment, integration, environmental testing, and preliminary data from in-space operations. Ground testing data show that the DeMi SHWFS can measure individual actuator deflections on the MEMS DM to within 10 nm of interferometric calibration measurements and can meet the 12-nm precision mission requirement for actuator deflection voltages between 0 and 120 V. Payload data from throughout environmental testing show that the MEMS DM and DeMi payload survived environmental testing and provides a valuable baseline to compare with space data. Initial data from space operations show the MEMS DM actuating in space with a median agreement between individual actuator measurements from space and equivalent ground testing data of 12 nm.

CC BY: © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Rachel E. Morgan, Ewan S. Douglas, Gregory Allan, Paula do Vale Pereira, Jennifer N. Gubner, Christian Haughwout, Bobby G. Holden, Thomas Murphy, John Merk, Mark D. Egan, Gábor Furész, Danilo Roascio, Yinzi Xin, and Kerri L. Cahoy "Optical calibration and first light for the deformable mirror demonstration mission CubeSat (DeMi)," Journal of Astronomical Telescopes, Instruments, and Systems 7(2), 024002 (29 June 2021). https://doi.org/10.1117/1.JATIS.7.2.024002
Received: 4 March 2021; Accepted: 11 June 2021; Published: 29 June 2021
Lens.org Logo
CITATIONS
Cited by 8 scholarly publications.
Advertisement
Advertisement
KEYWORDS
Actuators

Space operations

Calibration

Wavefronts

Wavefront sensors

Deformable mirrors

Microelectromechanical systems

Back to Top