Recent advancements in imaging technologies (MRI, PET, CT, among others) have significantly improved clinical localisation of lesions of the central nervous system (CNS) before surgery, making possible for neurosurgeons to plan and navigate away from functional brain locations when removing tumours, such as gliomas. However, neuronavigation in the surgical management of brain tumours remains a significant challenge, due to the inability to maintain accurate spatial information of pathological and healthy locations intraoperatively. To answer this challenge, the HyperProbe consortium have been put together, consisting of a team of engineers, physicists, data scientists and neurosurgeons, to develop an innovative, all-optical, intraoperative imaging system based on (i) hyperspectral imaging (HSI) for rapid, multiwavelength spectral acquisition, and (ii) artificial intelligence (AI) for image reconstruction, morpho-chemical characterisation and molecular fingerprint recognition. Our HyperProbe system will (1) map, monitor and quantify biomolecules of interest in cerebral physiology; (2) be handheld, cost-effective and user-friendly; (3) apply AI-based methods for the reconstruction of the hyperspectral images, the analysis of the spatio-spectral data and the development and quantification of novel biomarkers for identification of glioma and differentiation from functional brain tissue. HyperProbe will be validated and optimised with studies in optical phantoms, in vivo against gold standard modalities in neuronavigational imaging, and finally we will provide proof of principle of its performances during routine brain tumour surgery on patients. HyperProbe aims at providing functional and structural information on biomarkers of interest that is currently missing during neuro-oncological interventions.
Blue LED light (420 nm) has successfully been used to induce hemostasis through a photo-thermo-coagulation process: light absorption by hemoglobin triggers a local temperature increase, leading to a coagulation effect. Besides hemoglobin, there are other macromolecules, such as cytochromes, that are able to absorb blue light: after irradiation, these ubiquitous cellular components can trigger one or more intracellular pathway that modulates the healing process, in combination with the coagulation effect. The aim of this study is to investigate the molecular effects of 30s treatment with a Blue LED device in two different murine model wounds. In the first model we studied a superficial wound, and in particular the inflammatory response by an immunohistochemical and morphological analysis of the many cellular types involved in this phase of the healing process. The second model is a full-thickness wound: a customized ELISA kit enabled to study EGF, bFGF, VEGF, TNF-α, MMP-2 and PRO-MMP-9 at different postoperative time points (1, 3, 6, 9, 24 hours and 7 and 14 days after the treatment). A modulation of these parameters was evidenced in the early phase of the wound healing process, while at longer follow up times no differences are pointed out.
Keloids are an exuberant response to cutaneous wound healing, characterized by an exaggerated synthesis of collagen probably due to the increase of fibroblasts activity and their proliferation rate. Currently, there are not definitive treatments or pharmacological therapies able to prevent keloid formation and its recurrence. In the last years, physical treatments have been proposed and among them the photobiomodulation therapy. In this work, the effects of Blue LED light (410-430 nm wavelength, 0.69 W/cm2 power density, 5÷60s treatment time) were evaluated on seven boundary keloid tissues by using two different colorimetric assays. Micro-Raman spectroscopy was used to explore direct effects of the Blue LED light on the endogenous cellular redox system and in particular to probe any variation in the oxidation state of the photosensitive heme-protein Cytochrome C (Cyt C) upon irradiation. We also investigated the effects of Blue LED light on membrane currents correlated to cell cycle modulation by patch-clamp recordings. Twenty-four hours after irradiation, a significant reduction of cell metabolism and proliferation was observed. The decrease in cell metabolism was maintained up to 48 hours when we found also an increased reduction in cell proliferation. Electrophysiological recordings showed an enhancement of voltage-dependent outward currents elicited by a depolarizing ramp protocol after a 30s irradiation. Data indicates that Blue LED light irradiation directly affects human keloid fibroblasts: it possesses a long lasting inhibitory effect on cell metabolism and proliferation whereas acutely increases membrane currents. Similar responses were obtained in our recent works conducted on human keloid tissues. The proposed photomodulation treatment by using Blue LED light represents a non-invasive approach in the management of hypertrophic scars and keloids.
Keloids scars are an abnormal overgrowth of fibrotic tissue in response to an injury. The current treatments show several limits and do not represent a definitive solution or a prevention protocol. In a preliminary study, we irradiated two samples of human keloid fibroblasts with a Blue LED light, evidencing a possible modulation of their activity in vitro. In the current study, we use primary fibroblasts cultures from eight keloid tissues (from seven selected patients undergoing aesthetic surgery). The fibroblasts were irradiated with a Blue LED light and the treatment time was varied in the range 5÷60s. After irradiation, cell metabolism and cell proliferation were studied by the use of two colorimetric tests, CCK-8 and SRB (Sigma-Aldrich, Saint Louis, Missouri, USA). The analysis was performed 24 and 48h after the treatment. We thus evidenced that the Blue LED light induces a modulation of the fibroblasts metabolism; this effect is particularly evident at 30s irradiation time. We also evaluated the impact of Blue LED light on membrane currents by performing whole-cell patch-clamp recordings. We observed a significant increase of voltage dependent outward currents activated by a depolarizing ramp-protocol upon Blue LED light irradiation (@30s exposure). This effect was maintained in K+ free-solutions, thus ruling out the involvement of K+ channels. In conclusion, we demonstrated that the Blue LED light has a photobiomodulation effect in fibroblasts from human keloids. This effect can be proposed as a possible treatment of the wound site in human patients to prevent keloid scars occurrence.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.