A study of damage and ablation of silicon induced by two individual femtosecond laser pulses of different wavelengths, 1030 and 515 nm, is performed to address the physical mechanisms of dual-wavelength ablation and reveal possibilities for increasing the ablation efficiency. The produced ablation craters and damaged areas are analyzed as a function of time separation between the pulses and are compared with monochromatic pulses of the same total energy. Particular attention is given to low-fluence irradiation regimes when the energy densities in each pulse are below the ablation threshold and thus no shielding of the subsequent pulse by the ablation products occurs. The sequence order of pulses is demonstrated to be essential in bi-color ablation with higher material removal rates when a shorter-wavelength pulse arrives first at the surface. At long delays of 30-100 ps, the dual-wavelength ablation is found to be particularly strong with the formation of deep smooth craters. This is explained by the expansion of a hot liquid layer produced by the first pulse with a drastic decrease in the surface reflectivity at this timescale. The results provide insight into the processes of dual-wavelength laser ablation offering a better control of the energy deposition into material.
We report on the development and implementation of the digital holographic tomography for the three-dimensio- nal (3D) observations of the domain patterns in the ferroelectric single crystals. Ferroelectric materials represent a group of materials, whose macroscopic dielectric, electromechanical, and elastic properties are greatly in uenced by the presence of domain patterns. Understanding the role of domain patterns on the aforementioned properties require the experimental techniques, which allow the precise 3D measurements of the spatial distribution of ferroelectric domains in the single crystal. Unfortunately, such techniques are rather limited at this time. The most frequently used piezoelectric atomic force microscopy allows 2D observations on the ferroelectric sample surface. Optical methods based on the birefringence measurements provide parameters of the domain patterns averaged over the sample volume. In this paper, we analyze the possibility that the spatial distribution of the ferroelectric domains can be obtained by means of the measurement of the wavefront deformation of the transmitted optical wave. We demonstrate that the spatial distribution of the ferroelectric domains can be determined by means of the measurement of the spatial distribution of the refractive index. Finally, it is demonstrated that the measurements of wavefront deformations generated in ferroelectric polydomain systems with small variations of the refractive index provide data, which can be further processed by means of the conventional tomographic methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.