Paper
21 August 2001 Finite element analysis of passive piezoelectric damping tuned by using electrical impedance
Jaehwan Kim, Manfred Kaltenbacher, Reinhard Simkovics, Reinhard Lerch
Author Affiliations +
Abstract
Possibility of passive piezoelectric damping based on a new shunting parameter estimation method is studied using finite element analysis. Piezoelectric device with shunt electronic elements, for example, inductor and resistor, are normally used for passive piezoelectric damping to achieve damping near resonance of the target structure. The key in implementation of such an electronic damping is to tune the shunt parameters accurately. The adopted tuning method is based electrical impedance that is found at piezoelectric device and the optimal criterion for maximizing dissipated energy at the shunt circuit. Full three dimensional finite element model is used for piezoelectric devices with cantilever plate structure and shunt electronic circuit is taken into account in the model. Electrical impedance is calculated at the piezoelectric device, which represents the structural behavior in terms of electrical field, and equivalent electrical circuit parameters for the first mode are extracted using PRAP(Piezoelectric Resonance Analysis Program). After the shunt circuit is connected to the equivalent circuit for the first mode, the shunt parameters are optimally decided based on the maximizing dissipated energy criterion. A cantilever beam example is taken to demonstrate the piezoelectric damping in the finite element simulation. Less than 10 dB vibration reduction at the tip of the beam is achieved by the piezoelectric damping. When the electrical potential at the shunted electrode is simulated nearly 80 Volt was found at the first resonance frequency. The dissipated electrical power ratio with respect to the mechanical input power is calculated from this electrical voltage, and it was found to be 0.39, which is close to the energy ratio found from the electromechanical coupling coefficient of the piezoelectric patch. Since this tuning method is based on electrical impedance calculated at piezoelectric device, multi-mode passive piezoelectric damping can be implemented for arbitrary shaped structures.
© (2001) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Jaehwan Kim, Manfred Kaltenbacher, Reinhard Simkovics, and Reinhard Lerch "Finite element analysis of passive piezoelectric damping tuned by using electrical impedance", Proc. SPIE 4326, Smart Structures and Materials 2001: Modeling, Signal Processing, and Control in Smart Structures, (21 August 2001); https://doi.org/10.1117/12.436481
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Finite element methods

3D modeling

Smart structures

Electrodes

Circuit switching

Transition metals

Ferroelectric materials

Back to Top