Adnan Amin, Stephen Fischer, Anthony Parkinson, Ricky Shiu
Journal of Electronic Imaging, Vol. 5, Issue 04, (October 1996) https://doi.org/10.1117/12.245770
TOPICS: Detection and tracking algorithms, Hough transforms, Image processing, Scanners, Optical character recognition, Image segmentation, Fourier transforms, Image processing algorithms and systems, Image analysis, Detection theory
Document image processing has become an increasingly important technology in the automation of office documentation tasks. Automatic document scanners such as text readers and optical character recognition (OCR) systems are an essential component of systems capable of those tasks. One of the problems in this field is that the document to be read is not always placed correctly on a flat-bed scanner. This means that the document may be skewed on the scanner bed, resulting in a skewed image. This skew has a detrimental effect on document analysis, document understanding, and character segmentation and recognition. Consequently, detecting the skew of a document image and correcting it are important issues in realizing a practical document reader. We describe a new algorithm for skew detection. We then compare the performance and results of this skew detection algorithm to other published methods from O’Gorman, Hinds, Le, Baird, Postl, and Akiyama. Finally, we discuss the theory of skew detection and the different approaches taken to solve the problem of skew in documents. The skew correction algorithm we propose has been shown to be extremely fast, with run times averaging under 0.25 CPU seconds to calculate the angle on a DEC 5000/20 workstation.