Drew W. Halliday, Bryce P. Mulligan, Douglas Garrett, Stefan Schmidt, Sandra Hundza, Mauricio Garcia-Barrera, Robert Stawski, Stuart W. MacDonald
Neurophotonics, Vol. 5, Issue 01, 011013, (September 2017) https://doi.org/10.1117/1.NPh.5.1.011013
TOPICS: Statistical analysis, Functional magnetic resonance imaging, Brain activation, Brain, Performance modeling, Cognitive modeling, Hemodynamics, Near infrared spectroscopy, Neurophotonics, Neuroimaging
Objective: although the preponderance of research on functional brain activity investigates mean group differences, mounting evidence suggests that variability in neural activity is beneficial for optimal central nervous system (CNS) function. Independent of mean signal estimates, recent findings have shown that neural variability diminishes with age and is positively associated with cognitive performance, underscoring its adaptive nature. The present investigation sought to employ functional near infrared spectroscopy (fNIRS) to derive two operationalizations of cerebral oxygenation, representing mean and variability [using standard deviation (SD)] in neural activity, and to specifically contrast these mean- and SD-oxyhemoglobin (HbO) estimates as predictors of cognitive function. Method: a total of 25 older adults (71 to 81 years of age) completed a test of cognitive interference (Multisource Interference Task) while undergoing fNIRS recording using a multichannel continuous-wave optical imaging system (TechEn CW6) over bilateral prefrontal cortex (PFC). Time-varying covariation models were employed to simultaneously estimate the within- and between-person effects of cerebral oxygenation on behavioral performance fluctuations. Results: mean effects were predominantly observed at the between-person level and suggest that greater concentrations of HbO are associated with slower and less accurate performance. Greater HbO variability at the between-person level was associated with slower performance, but was associated with faster performance at the within-person level. Conclusions: these findings are in keeping with assertions that mean and variability confer complementary (as opposed to redundant) sources of information regarding the effective functioning of a neural system and suggest that fNIRS is a viable methodology for capturing meaningful variance in the hemodynamic response that is characteristic of adaptive CNS function.