We present a new concept for generating wideband signals of higher spectral efficiency from signals of low-bandwidth and lower efficiency. With pure electronics, we are able to generate broad-bandwidth signals with low-modulation format from low-bandwidth sub-DACs. This is based on electrical orthogonal sampling with sinc-pulse sequences in N parallel branches. In photonics, a higher spectral efficiency can be achieved from M branches at different optical powers. The proposed method can be integrated into any silicon platform and might be of great interest for bandwidth, and data hungry applications.
In this paper we investigated the different detection techniques especially direct detection, coherent heterodyne detection and coherent homodyne detection on FMCW LIDAR system using Optisystem package. A model for target, propagation channel and various detection techniques were developed using Optisystem package and then a comparative study among various detection techniques for FMCW LIDAR systems is done analytically and simulated using the developed model. Performance of direct detection, heterodyne detection and homodyne detection for FMCW LIDAR system was calculated and simulated using Optisystem package. The output simulated performance was checked using simulated results of MATLAB simulator. The results shows that direct detection is sensitive to the intensity of the received electromagnetic signal and has low complexity system advantage over the others detection architectures at the expense of the thermal noise is the dominant noise source and the sensitivity is relatively poor. In addition to much higher detection sensitivity can be achieved using coherent optical mixing which is performed by heterodyne and homodyne detection.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.