Longitudinal mesoscopic photoacoustic imaging of vascular networks requires accurate image co-registration to assess local changes in growing tumours, but remains challenging due to sparsity of data and scan-to-scan variability. Here, we compared a set of 5 curated co-registration methods applied to 49 pairs of vascular images of mouse ears and breast cancer xenografts. Images were segmented using a generative adversarial network and pairs of images and/or segmentations were fed into the 5 tested algorithms. We show the feasibility of co-registering vascular networks accurately using a range of quality metrics, taking a step towards longitudinal characterization of those complex structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.