Starting with a waveguide amplifier as a crucial building block among many others, we demonstrate a library of optical elements that can be seamlessly integrated on a single silica-on-silicon chip and produce complex integrated optical circuits. This new level of planar waveguide integration is made possible by recent advances in our waveguide manufacturing technology capable of combining up to three different core materials on the same wafer. We discuss in details the performance and applications of these elements as well as new circuits, such as an amplified reconfigurable add-drop module.
From its foundation Inplane Photonics focused on developing integrated solutions based on Planar Lightwave Circuit(PLC) technology. It is universally agreed that the path to lower cost-per-function in Photonics, as in Electronics, leads to integration. The timing of introduction of a new technological solution and the rate at which it will penetrate the market very much depends on the interplay between the size of the market, advantages the new technology offers, and the investment needed to achieve the level of performance that is envisioned. In telecom applications, where the main drivers for technology selection are cost and performance, such large-scale investment did not materialized yet for the PLC technology mostly due to a limited market size.
Planar waveguide technology has long been touted as the major platform for optical integration, which could dramatically lower component/module size and cost in optical networks. This technology has finally come to maturity with such waveguide-based optical products as wavelength multiplexers, switches, splitters and couplers, which are common nowadays. However, its potential as a complete solution for integration of a subsystem on a chip has so far been limited by the lack of integrated active elements providing gain to deteriorating optical signals. As the signal propagates through the fiber-optic network, it dissipates its energy and requires amplification in the network subsystems to maintain a required signal to noise ratio. Discrete fiber amplifiers are designed into systems and maintain required signal levels. However, if new components are introduced or the current ones are changed, current amplifiers have a limited ability to compensate for changes. Inplane's solution to the signal degradation problem is an optical amplifier that can be integrated onto the same planar waveguide platform as the other passive elements of the subsystem. Subsystems on such a platform will be able to automatically and internally adjust signal optical power, and enable simple interfacing between optical modules, module replacement and upgrades in the network. Inplane Photonics has developed Er-doped waveguide amplifier (EDWA) technology, which is fully compatible with the glass-on-silicon waveguide platform. In this paper we will present recent EDWA performance that approaches that of a fiber amplifier. Furthermore, we will demonstrate several examples of practical integration between passive and active building blocks on a single optical chip.
One of the trends that persist in the telecom industry in all market conditions is a continuous push towards lower cost and higher performance optical components. Unlike today’s networks, a more cost efficient network of tomorrow will contain many components utilizing Planar Lightwave Circuits (PLC) technology. PLC technology is a platform for optical integration that could dramatically lower cost-per-function in many optical networks. However, integration may result in degraded optical performance due to higher insertion losses as compared to “standard” fiber-based solutions. A solution to the loss problems is an optical amplifier that can be integrated on the same PLC platform and used to restore optical signals as needed. Inplane Photonics is developing Er-doped waveguide amplifier (EDWA) technology, which is fully compatible with a glass-on silicon PLC platform. We identify that an EDWA is a necessary building block to achieve the full potential of optical integration. In this paper we will present recent EDWA performance that approaches that of an EDFA. Furthermore, we will demonstrate several examples of practical integration between passive and active building blocks on a single PLC chip.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.